Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu"

Transkrypt

1 Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Zasosowanie modeli klasy ARCH do opisu własnoci szeregu sóp zwrou indeksu WIG Wsp Sporód rónych rodzajów ryzyka wyspujcego na rynkach finansowych, najwicej uwagi, jak do ej pory, powicono ryzyku rynkowemu zwizanemu ze zmianami cen insrumenów finansowych (por. Jajuga (999)). Cech charakerysyczn nowoczesnego zarzdzania ym ryzykiem sało si wykorzysywanie coraz bardziej wyrafinowanych meod maemaycznych, w ym przede wszyskim procesów sochasycznych, za pomoc kórych opisuje si bd o zmiany cen insrumenów finansowych, bd ich sopy zwrou. Modele e wykorzysuje si naspnie midzy innymi w zagadnieniach zwizanych z analiz porfelow, z wycen opcji, czy pomiarem ryzyka rynkowego meod Value a Risk (por. Gourieroux (997), Tsay (00), Pionek (00)). O porzebie skuecznego modelowania zmian cen lub sóp zwrou oraz wakoci zagadnienia wiadczy moe przyznanie 8. padziernika 003 nagrody Nobla w zakresie ekonomii współwórcom podsaw nowoczesnej analizy szeregów czasowych Roberowi Engle'owi oraz Clivowi W. J. Grangerowi. Celem pracy jes pokazanie jak wiele nowych pomysłów wniesiono do zaproponowanego przez Engle'a w 98 roku najprosszego modelu zmiennej w czasie wariancji - modelu ARCH (Auoregressive Condiional Heeroskedasiciy) - oraz zaprezenowanie przydanoci prezenowanych rozwiza do opisu własnoci szeregów sóp zwrou z indeksu WIG. W dalszej czci pracy przedsawione zosały kolejno, najczciej rozparywane uogólnienia klasycznego (najprosszego) modelu ARCH. Niniejsza praca w aden sposób nie preenduje do opisania całego bogacwa klasy modeli zapoczkowanej przez Engle'a. Waro zaznaczy, e rozparywana bd jedynie jednorównaniowe modele opisujce warunkow wariancj pojedynczego insrumenu, umoliwiajce opis charakerysycznych efeków obserwowanych w szeregach sóp zwrou. Kolejnym nauralnym rozszerzeniem ej koncepcji jes opis warunkowej macierzy kowariancji dla wikszej liczby analizowanych równoczenie insrumenów (Mulivariae GARCH Models) (por. Gourieroux (997)). Prezenacja jednak, choby bardzo ogólna, rozwiza w ym zakresie wykracza poza ramy niniejszej pracy.

2 W czci empirycznej przedsawiono wykorzysanie modelu AR-FIAPARCH do opisu własnoci szeregu sóp zwrou z indeksu WIG. Wybrany zosał indeks cen akcji, gdy włanie w szeregach sóp zwrou z akcji wyspuje najwicej obserwowanych (koniecznych do modelowania) efeków.. Własnoci finansowych szeregów czasowych sóp zwrou Sandardowe (najprossze) modele zakładaj, e procesem kszałujcym zmiany cen akcji, walu, czy owarów jes geomeryczny proces Browna ze sałymi w czasie paramerami dryfu (rendu) i zmiennoci (por. Pionek (00)). Model en zakłada, e rozkład sóp zwrou jes rozkładem normalnym, a poszczególne sopy zwrou pochodz z rozkładów idenycznych i niezalenych. W wielu pracach (por. Box, Jenkins (986), Bollerslev (986), Tsay (00), Pionek (00), Pionek (003)) przedsawiono wyniki bada empirycznych dla rónych finansowych szeregów czasowych, kóre przecz ym załoeniom. Badania e wykazały wyspowanie w szeregach sóp zwrou: efeku skupiania (gromadzenia) zmiennoci (volailiy clusering), co oznacza, e zarówno małe, jak i due zmiany kursu naspuj seriami, a ym samym oznacza niesało wariancji sóp zwrou w czasie, efeku lepokurozy i grubych ogonów rozkładów sóp zwrou, co oznacza, e prawdopodobieswo wyspienia duych, nieypowych zmian kursu (due co do waroci bezwzgldnej sopy zwrou) jes wiksze ni gdyby sopy zwrou pochodziły z rozkładu normalnego, efeku skonoci rozkładów sóp zwrou (najczciej obserwuje si rozkłady prawosronnie skone, lecz nie jes o reguł), efeku auokorelacji sóp zwrou, szczególnie w okresach o małej zmiennoci, efeku dwigni - efeku ujemnego skorelowania poziomu kursów i poziomu zmiennoci sóp zwrou, czyli asymerycznego wpływu informacji pozyywnych i negaywnych na poziom przyszłej wariancji, efeku długiej pamici w szeregach zmiennoci (wariancji), czyli isonie znaczcych współczynników wysokich rzdów auokorelacji kwadraów sóp zwrou. Rysunki -4 prezenuj niekóre opisywane własnoci na podsawie szeregu dziennych, prosych sóp zwrou z indeksu WIG z okresu od (dzie wprowadzenie piciosesyjnego ygodnia na GPW) do (por. Pionek (003)). W ogólnoci wariancja moe w ogóle nie isnie.

3 Niezbdne sało si wic poszukiwanie modeli bardziej skomplikowanych ni model geomerycznego ruchu Browna, kóre lepiej opisywałyby własnoci szeregów sóp zwrou (uwzgldniałyby przynajmniej niekóre z wymienionych powyej efeków). Rys.. Efek gromadzenia zmiennoci dla indeksu WIG Rys.. Efek grubych ogonów rozkładu sóp zwrou indeksu WIG Rys. 3. Auokorelacja sóp zwrou dla indeksu WIG ródło : obliczenia własne. Rys. 4. Auokorelacj kwadraów sóp zwrou dla indeksu WIG. Model ogólny Rozparywany w dalszej czci pracy model w czasie dyskrenym opisujcy szereg czasowy prosych sóp zwrou dany jes równaniem (por. Pionek (00)): X X r = = µ + ε = µ + h z, () X gdzie X - cena w chwili, µ - warunkowa waro oczekiwana sopy zwrou w chwili ( E [ r I ] µ = ), h - warunkowa wariancja sopy zwrou w chwili ( var [ ] h = r I ), z - niezalene reszy modelu o zerowej redniej i jednoskowej wariancji ( z = iid D(0,) ), I - informacja dospna w chwili -.

4 Model en zapisuje si równie w posaci: r I ~ D( µ, h ). () Resz modelu ε mona uosamia z łczna miar informacji docierajcej do rynku w chwili. Dobre wiadomoci ( ε > 0 ) skukuj poencjalnie wzrosem ceny insrumenu (dodania waroc sopy zwrou), naomias złe wiadomoci ( ε < 0 ), o poencjalny spadek ceny w kolejnym podokresie. Waro na 3 obszary: ε okrela wag informacji (por. Engle, Ng (993)). Zagadnienia zwizane z modelowaniem szeregów sóp zwrou ( r ), podzieli mona wybór posaci funkcji gsoci sandaryzowanych resz modelu ( z ), modelowanie warunkowej waroci oczekiwanej procesu ( µ ), modelowanie warunkowej wariancji procesu ( h ). Wszyskie 3 zagadnienia naley rozparywa łcznie, gdy wzajemnie wpływaj na siebie i wspólnie deerminuj własnoci osaecznego modelu... Sandaryzowane reszy modelu W podsawowej wersji zaproponowanej przez Engle a i Bollersleva (por. Bollerslev, Engle, Nelson (994)) modele heeroskedasyczne cechowały si normalnym warunkowym rozkładem składnika losowego. Okazało si jednak, e rzeczywise reszy modelu posiadaj rozkład warunkowy o grubszych ogonach ni rozkład normalny. Zaproponowano wic szereg innowacji w ym zakresie. Najczciej wykorzysuje si naspujce rozkłady: normalny, uogólniony rozkład błdu (General Error Disribuion, GED), skony oraz symeryczny rozkład -Sudena oraz waroci eksremalnych. Rozkłady e maj cech, i moliwe jes przeskalowanie ich do rozkładów o zerowej redniej i jednoskowej wariancji, co pozwala inerpreowa µ jako warunkow waro oczekiwan, a h jako warunkow wariancj. Rozkład -Sudena oraz rozkład GED s rozkładami, dla kórych w zalenoci od przyjej liczby sopni swobody moliwe jes uzyskanie rozkładów o grubszych ogonach ni rozkład normalny. Naley zaznaczy, i w niniejszej pracy przyjmuje si, e liczba sopni swobody jes sałym paramerem, kórego waro naley wyesymowa. Rozwaa si jednak ju propozycje, by liczba sopni swobody opisywana była dodakowym procesem, co skukuje pojciem warunkowej lepokurozy rozkładów. Oczywicie naley uwzgldni równie wpływ parameru µ.

5 W przykładzie empirycznym przedsawionym w dalszej czci wykorzysany zosanie symeryczny rozkład -Sudena oraz (zawierajcy si w nim) rozkład normalny. Ze wzgldu na ograniczone rozmiary pracy zrezygnowano z analizy warianu ze skonym rozkładem -Sudena. Poencjalny efek asymerii rozkładu sóp zwrou opisany zosanie przez uwzgldnienie efeku dwigni w warunkowej wariancji. Warunkowy rozkład normalny oraz symeryczny -Sudena zmiennej naspujcymi posaciami funkcji gsoci rozkładu: a) rozkład normalny - N(0,): f N ε = ( ε, h ; θ N ) exp (3) πh h b) rozkład -Sudena -S(0,,) ν + Γ h f (, ; ) S ε h θ S = ν Γ / ( ν ) + π ε ( ν ) z zadane s gdzie θ - wekor paramerów modelu (dla rozkładów -Sudena liczba sopni swobody jes równie paramerem modelu), ν - ilo sopni swobody w rozkładzie -Sudena, z x Γ(z) - funkcja gamma dla parameru z; Γ( z) = x e dx. 0 Naley wyranie podkreli, e powysze posaci rozkładów cechuj si zerow rednia i jednoskow wariancj. h ν + (4).. Modelowanie auokorelacji w szeregach sóp zwrou Efek auokorelacji niskich rzdów szeregów sóp zwrou obserwowany jes szczególnie silnie dla indeksów cen akcji. Znak auokorelacji rzdu pierwszego (w przypadku szeregów sóp zwrou dla indeksów i akcji) jes najczciej dodani. Znaczce auokorelacje rzdów wyszych od pierwszego wyspuj rzadko i najczciej posiadaj znak ujemny (por. Jajuga (000), Tsay (00)). Do opisu obserwowanej auokorelacji szeregów sóp zwrou wykorzysuje si znane procesy z klasy liniowych procesów auoregresji i redniej ruchomej (ARMA). Meodologia a jes na yle znana (por. Box, Jenkins (986)), i porakowana zosanie w sposób bardzo skróowy. W zagadnieniach zwizanych z modelowaniem finansowych szeregów czasowych za pomoc procesów klasy ARMA(p,q) 3, rzadko kiedy sosuje si modele, dla kórych p+q>3. Rzd modelu wyznacza si na podsawie odpowiednich esów, bd na podsawie analizy przebiegu funkcji auokorelacji i auokorelacji czskowej. Zaznaczy naley, i czciej sosuje si modele AR(p). Posługiwanie si modelami auoregresji jes inuicyjnie znacznie 3 Przy załoeniu, e modeluje si równie zmienn w czasie wariancj procesu.

6 prossze, gdy wykorzysuje si zmienne obserwowalne ( r k ), a nie jak w przypadku modeli redniej ruchomej i mieszanych zmienne nieobserwowalne ( ε k ). Rzadko uywa si równie do opisu własnoci szeregów sóp zwrou modeli zinegrowanych (ARIMA) oraz ułamkowo zinegrowanych (ARFIMA). Najczciej wykorzysuje si wic proces AR(), kórego warunkowa waro oczekiwana dana jes wzorem: [ ] µ = E r I = µ 0 + ϕr, gdzie µ 0, ϕ - paramery modelu..3. Modelowanie szeregów zmiennoci Z punku widzenia niniejszej pracy zdecydowanie najwaniejsze pozosaj modele warunkowej wariancji procesu. To włanie o modele pozwalaj opisa najciekawsze efeky obserwowane w szeregach sóp zwrou. Pierwszym modelem uwzgldniajcym zaleno warunkowej wariancji procesu od jego poprzednich waroci był model ARCH (Auoregressive Condiional Heeroskedasic Model) wprowadzony w 98 roku przez Engla w celu modelowania poziomu inflacji w Wielkiej Bryanii (por. Engle (98)). Okazało si, e model en i kolejne modele ej klasy mog by szczególnie przydane w opisie szeregów sóp zwrou rónych insrumenów finansowych. Model sóp zwrou uwzgldniajcy efek ARCH(q) dany jes naspujcym równaniem warunkowej wariancji: h q = ω + αiε i ω + α( L) ε i=, (6) q gdzie: ω 0, αk 0 k =,,..., q, α q > 0, α( L) = αl + αl αql, a L o operaor przesunicia wsecz (por. np. Box, Jenkins (986)): Lx = x, m L x =. x m Sacjonarnoci w szerszym sensie procesu ε uzyskuje si, gdy q αi = α() <. i= Nierudno wykaza, e w przypadku choby najprosszego modelu ARCH(), kuroza ε (deerminujca równie kuroz r ) dana jes wzorem: Eε kur[ ε ] = = 3+ Eε 3 4 α α, (7)

7 co oznacza, e gdy ylko α < 3 3, uzyskujemy kuroz bezwarunkowego rozkładu sóp zwrou wiksz od 3. Przyjcie modelu zmiennej w czasie warunkowej wariancji umoliwia wic równie modelowanie grubych ogonów rozkładów. Posa wzoru (6) ukazuje równie, e aki model posiada moliwo opisu efeku auokorelacji kwadraów sóp zwrou, czyli efeku skupiania (gromadzenia) zmiennoci. Wszyskie modele klasy ARCH (w ym ake prezenowane w dalszej czci pracy) umoliwiaj opis efeku skupiania danych oraz (dla odpowiednio dobranych paramerów modelu) efek grubych ogonów rozkładu bezwarunkowego sóp zwrou. Odpowiednie dopasowanie modelu ARCH do danych wymaga czso uwzgldnienia wysokiej waroci rzdu q, co jes niewpliwie wad ego modelu. Niedogodnoci ej pozbawiony jes niewpliwie najpopularniejszy (w zakresie opisu warunkowej wariancji procesu) model GARCH (Generalized ARCH Model) wprowadzony przez Bollersleva w 986 roku. Równanie warunkowej wariancji w modelu GARCH(p,q) dane jes naspujc zalenoci: q p = ω + αiε i + β j j = ω + α( ) ε + β ( ) i= j=, (8) h h L L h gdzie dodakowo: βk 0 k =,,..., p, β p > 0, ( L) β L + β L +... β p p L. β + z warunkiem na sacjonarno procesu q p α + β j = α() + β () <. i i= j= Badania empiryczne dowodz, e model GARCH(p,q) 4 znacznie lepiej dopasowuje si do danych empirycznych ni model ARCH(p). Nie jes o zaskoczeniem, mona bowiem wykaza, e model GARCH(p,q) mona wyrazi jako ARCH( ) : h ω α( L) = + ε = ω + αiε i [ β ()] [ β ( L)] i= Własnoci duej grupy modeli warunkowej wariancji analizuje si włanie poprzez wyraenie ich jako modele ARCH( ). W prakyce niezbdne jes zasosowanie duego, ale skoczonego rzdu modelu ARCH. Model GARCH mona przedsawi równie jako model ARMA(m,p), m=max(p,q): [ α ( L) β ( L)] ε ω [ β ( L)] ν = +, gdzie ν = ε h. (9) Zakłada si, e wszyskie pierwiaski wielomianów α( L) β ( L) = 0 oraz β ( L) = 0 znajduj si poza okrgiem jednoskowym na płaszczynie liczb zespolonych.

8 Najczciej rozparywany model GARCH(,) dany jes równaniem: [ ( α + β ) L] ε = ω + [ β L] ν. (0) Szczególnym przypadkiem, nie analizowanym w ej pracy jes model IGARCH (Inegraed GARCH), kóry uzyskuje si w przypadku, gdy α + β = (por. Pionek (003)). Warunkowa wariancja modelu GARCH(,) w chwili zaley od informacji (zaburzenia) z chwili - poprzez zaleno ( ) h = f ε = A + αε, gdzie A ω βh f ε = +. Funkcja ( ) jes wygodnym narzdziem umoliwiajcym opis własnoci modeli klasy ARCH. Meoda a wprowadzona zosała przez Pagana i Schwera w 990 roku (por. Pagan, Schwer (990)), a naspnie spopularyzowana przez Engle a i Ng pod nazw krzywej wpływa informacji (News Impac Curve) (por. Engle, Ng (993)). Zarówno dla modeli ARCH, jak i GARCH, krzywa a opisywana jes przez funkcj symeryczn wzgldem ( ε = 0 ) o kszałcie paraboli. Kolejne uogólnienia modelu GARCH w zakresie opisu jedynie skupiania zmiennoci f ε sprowadzaj si do odmiennego zdefiniowania funkcji ( ), kóra nie musi by ju funkcj paraboliczn, lecz nadal jes jednak symeryczna wzgldem osi ε = 0. Ciekawym modelem o powyszych własnociach funkcji wpływu informacji jes zaproponowany przez Higinsa i Ber w 99 roku (por. Higgins, Bera, (99)) model P(G)ARCH (Power (G)ARCH) o posaci: δ q p δ δ δ δ = ω + αi ε i + β j j = ω + α ( ) ε + β ( ) i= j=, () h h L L h dla kórego uzyskuje si naspujc funkcj wpływu informacji: ( ) ( ) δ ε α ε δ h = f = A + () A sała zalena od rzdu modelu. Rys. 5. Krzywa wpływu informacji modelu P(G)ARCH ródło: opracowanie własne. 4 Jes o prawd nawe dla niskich waroci p i q. Wyjkowo rzadko rozwa si modele, dla kórych p+q>3.

9 Model P(G)ARCH umoliwia modelowanie zarówno warunkowej wariancji (model GARCH, δ = ), jak i warunkowego odchylenia sandardowego (model Taylora i Schwera, δ = ) oraz wszyskich rozwiza porednich. W modelu ym niezbdna jes esymacja parameru δ. W zalenoci od waroci parameru δ obserwuje si rón sił wpływu nowych informacji na waro warunkowej wariancji..4. Modelowanie efeku dwigni i skonoci W modelach warunkowej wariancji efeky dwigni i skonoci uzyskuje si poprzez odpowiedni modyfikacj kszału lub połoenia funkcji wpływu informacji. Waro zaznaczy, i asymeria w srukurze zmiennoci generuje ake skono rozkładu sóp zwrou. Isnieje wiele uogólnie modelu GARCH, kóre pozwalaj uwzgldni asymeryczny wpływ dobrych i złych wiadomoci (por. Bollerslev, Engle, Nelson (994)). Poniej zaprezenowane zosan najpopularniejsze propozycje. Take w ym przypadku, rozrónienia własnoci modeli najprociej dokona poprzez analiz funkcji wpływu informacji. Efek asymerycznego wpływu informacji mona uzyska poprzez: przesunicie symerycznej krzywej wpływu informacji ak, by minimum funkcji nie wypadało dla ε = 0, zagwaranowanie minimum funkcji ( ) nachyleniu obu ramion krzywej. f ε dla ε = 0, ale wprowadzenie asymerii w Podsawowym modelem, w kórym opis efek dzwigni uzyskuje si poprzez przesunicie symerycznej krzywej wpływu informacji jes model AGARCH(p,q) (Asymmeric GARCH) okrelony jako: h q = ω + α ε κ + β h i i i j j i= j= p = ω + α( L) ε κ + β ( L) h (3) i κ i Rys. 6. Krzywe wpływu informacji dla modelu AGARCH ródło: opracowanie własne.

10 Dla κ > 0 uzyskuje si model, w kórym krzywa wpływu informacji przesunia jes w prawo, co pozwala uchwyci silniejszy wpływ informacji złych ni dobrych (o ej samej wanoci) na kolejn waro warunkowej wariancji. Odmiennym podejciem jes wykorzysanie asymerycznej krzywej wpływu informacji, kóra jednak posiada swoje minimum dla ε = 0. W podejciu ym narzuca si warunek, e lewe rami krzywej ma rosn szybciej ni prawe, czyli f ( x) > f ( x) dla x > 0. Najpopularniejszymi rozwizaniami w ym zakresie s modele GJR-GARCH oraz EGARCH (Exponenial GARCH) (por. Bollerslev, Engle, Nelson (994), Pionek (00)). W modelu GJR-GARCH kade z ramion jes opisane przez połówk paraboli o rónym nachyleniu, a w modelu EGARCH ramiona opisuj funkcje wykładnicze. Prakycznie nie wykorzysuje si innych posaci modeli ni dla p=q=. Poniej przedsawione zosały posaci modeli oraz przykładowe kszały funkcji wpływu informacji: Model GJR-GARCH(,) Model EGARCH(,) 5 ( ( ε ) ) < 0 h = ω + α + α I ε + β h (4) I ( p) = ; gdy p = prawda 0; gdy p = falsz ln h = ω + α g( z ) + β ln h (5) ξ ( ) g( z ) = z + z E z efek znaku efek waroci bezwzgldnej Rys. 7. Krzywe wpływu informacji dla modelu GJR-GARCH ródło: opracowanie własne. Rys. 8. Krzywe wpływu informacji dla modelu EGARCH ródło: opracowanie własne. Nie ma jednoznacznej konkluzji, kóry z modeli w sposób najlepszy opisuje efek dwigni w szeregach sóp zwrou. Wydaje si jednak, e modele GJR-GARCH jes modelem 5 Model EGARCH jes modelem, kórego posa zaley od przyjego rozkładu warunkowego błdu modelu, czyli rozkładu z.

11 najczciej wykorzysywanym, ze wzgldu na jego wiksz inuicyjno (od np. modelu AGARCH) oraz znacznie ławiejsz aplikacj w zagadnieniach finansowych od modelu EGARCH. Modelem zyskujcym jednak osanio na popularnoci jes model APGARCH 6 (Asymmeric Power GARCH) (por. Ding, Granger, Engle (993)): δ q p δ δ δ δ = ω + αi ε i κi + β j j = ω + α( ) ε κi + β ( ) i= j=, (6) h h L L h kóry łczy w sobie cechy modeli PGARCH i AGARCH. Docenion zale ego modelu jes sosunkowo prosa moliwo uogólnienia go w zakresie opisu długiej pamici w szeregu zmiennoci..5. Modelowanie długiej pamici w szeregach zmiennoci Samo pojcie "pamici modelu" nie jes jednoznaczne, szczególnie w odniesieniu do modeli warunkowej wariancji. Pojcia "pami modelu" uywa si bd o konekcie funkcji auokorelacji kwadraów 7 resz modelu ( ε ), bd w konekcie wpływu zaburzenia z chwili na prognozy warunkowej wariancji w chwilach kolejnych (por. Baillie, Bollerslev, Mikkelsen (996), Ding, Granger (996), Pionek (003)). Podejcia e bywaj rozbiene i model o krókiej pamici w sosunku do auokorelacji kwadraów resz modelu moe by modelem o długiej, lub wrcz nieskoczonej pamici w konekcie wpływu zaburzenia na prognoz warunkowej wariancji (por. Pionek (003)). Dua dowolno okrele i nieprecyzyjne rozrónianie ych dwóch koncepcji prowadzi do wielu niejasnoci i sprzecznoci. Naley wyranie zaznaczy, e emaem ej pracy jes długa pami procesu w znaczeniu isonych współczynników auokorelacji wysokich rzdów kwadraów resz modelu. Wyspowanie ego efeku w szeregu sóp zwrou z indeksu WIG obrazuje Rys. 4. Bardziej precyzyjnie, mówi si o "długiej pamici" szeregów zmiennoci (wariancji) w przypadku, gdy: n, gdzie ρ ( k corr ε, ε ) k k n lim ρk = n = =. (7) Modelem umoliwiajcym w opis długiej pamici w szeregu zmiennoci jes model FIGARCH(p,d,q) (Fracionally Inegraed GARCH) wprowadzony w 996 roku przez Baillie'go, Bollersleva i Mikkelsena. 6 Model en czso okrelany jes równie (roch mylnie) skróem APARCH. 7 Czy ogólnie auokorelacji szeregu { c } ε, gdzie c.

12 Model FIGARCH opisany jes naspujcym wzorem: [ φ( L)]( L) d ε ω [ β ( L)] ν = +, (8) gdzie d (0,), φ φ φ φ k ( L) L + L k L, a wszyskie pierwiaski φ( L) 0 = oraz β ( L) = 0 le poza okrgiem jednoskowym. Dla ego modelu bezwarunkowa wariancja ε, a ym samym wariancje bezwarunkowa r jes nieskoczona. Ide pomysłu Baillie'go, Bollersleva i Mikkelsena najławiej przeledzi poprzez porównanie wzorów (8) i (9). Szerzej na ema modelu FIGARCH i jego zwizku z modelem GARCH i IGARCH oraz szczegółowo na ema własnoci funkcji auokorelacji kwadraów resz modelu w konekcie modelowania własnoci szeregu sóp zwrou z indeksu WIG znale mona w pracy Pionka (por. Pionek (003)). Funkcja auokorelacji kwadraów resz modelu FIGARCH maleje w sposób hiperboliczny, czyli dla niewielkich rzdów funkcja auokorelacji maleje w sposób szybszy ni dla przypadku wykładniczego, a dla wysokich rzdów maleje bardzo powoli. Takie zachowanie funkcji auokorelacji prowadzi do spełnienia warunku (7) i umoliwia nazwanie modelu FIGARCH modelem o długiej pamici (w konekcie funkcji auokorelacji kwadraów resz modelu). Inuicyjne rakowanie modelu FIGARCH jako modelu o własnociach porednich midzy modelem GARCH i IGARCH jes zawodne. Zarówno model GARCH, jak i IGARCH s modelami o krókiej pamici, a model FIGARCH jes modelem o długiej pamici w sensie definicji danej wzorem (7). W kocowej implemenacji model FIGARCH(p,d,q) przyblia si jako model ARCH(q) bardzo wysokiego rzdu (q zazwyczaj jes wiksze ni 500): h ω [ φ( L)]( L) ω β () β ( L) β () d = + ε + λ( L) ε. (9) W prakyce nie wykorzysuje si bardziej skomplikowanego modelu ni FIGARCH(,d,). Model FIGARCH umoliwia opis skupiania zmiennoci, grubych ogonów bezwarunkowego rozkładu sóp zwrou oraz długiej pamici w szeregu zmiennoci, nie ma jednak moliwoci modelowania efeku dwigni oraz w sposób narzucony opisuje zmiany warunkowej wariancji procesu. Niedogodnoci ych mona pozby si przez połczenie własnoci modelu APGARCH oraz FIGARCH. Dodakowo mona uwzgldni efeku auokorelacji w szeregu r oraz warunkowy rozkład o grubych ogonach. Prowadzi o do modelu AR-FIAPGARCH-(-S). Model en jes modelem łczcym własnoci wczeniej prezenowanych modeli AR, ARCH, GARCH, PARCH, AGARCH, APGARCH, FIGARCH.

13 3. Przekład empiryczny Celem przykładu empirycznego jes zobrazowanie moliwoci wykorzysania modeli z warunkow waroci oczekiwan oraz warunkow wariancj do opisu własnoci szeregu sóp zwrou z indeksu WIG. Prób do bada sanowił szereg prosych, dziennych sóp zwrou z indeksu WIG liczonych według cen zamknicia rynku w kolejnych dniach sesyjnych. Łczna długo szeregu o 03 obserwacji (od r. do r.). Esymacji paramerów analizowanych procesów dokonano za pomoc pakieu Laurena i Peersa 3.0. napisanego w jzyku Ox Doornika i Oomsa (por. Do wyboru opymalnej posaci modelu wykorzysano kryerium Akaike a: LLF (liczba paramerów modelu) AIC = + liczba obserwacji oraz ze wzgldu na fak, e niekóre rozparywane modele zawieraj si w sobie, zasosowano (w pewnych przypadkach) es opary na warociach funkcji wiarygodnoci (Likelihood Raio Tes) dany naspujc saysyk: LRT = ( LLF LLF ), () 0 gdzie: LLF - waro logarymu funkcji najwikszej wiarygodnoci dla modelu z mniejsz liczb resrykcji, LLF 0 - waro logarymu funkcji najwikszej wiarygodnoci dla modelu z wiksz liczb resrykcji. Saysyka LRT ma rozkład rónicy w liczbie resrykcji modeli. (0) χ z iloci sopni swobody równ Rozparywano (przede wszyskim) modele zagniedzone w omówionym we wczeniejszej czci pracy modelu AR()-FIAPGARCH(,d,) z warunkowym symerycznym rozkładem -Sudena. Model aki dany jes naspujcym zesawem równa: r = µ 0 + ϕr + h z δ d δ h = ω + { [ βl] ( φl )( L) }( ε κε ). () z ~ iid -S(0,, ν ) Jes o ogólny model, kóry poencjalnie umoliwia opis wszyskich zaprezenowanych wczeniej efeków wyspujcych w szeregach sóp zwrou. Modele ułamkowe (z dług pamici w szeregach zmiennoci) przybliane były modelem ARCH rzdu q=500. Tabela prezenuje waroci logarymu funkcji najwikszej wiarygodnoci, liczb paramerów modelu oraz waro kryerium AIC dla rozparywanych modeli dla szeregu sóp zwrou indeksu WIG.

14 Nierudno zauway, i uwzgldnienie auoregresji rzdu pierwszego oraz efeku GARCH znacznie wpływa na poprawienie jakoci modelu. Modele klasy Power GARCH nie powoduj poprawy własnoci modelu w sosunku do prosych modeli GARCH. Korzysne jes naomias uwzgldnienie efeku dwigni (modele klasy AGARCH) oraz długiej pamici (FIGARCH). Ze wzgldu na kryerium Akaike a model najbardziej ogólny (AR- FIAPGARCH(,d,)) w minimalny sposób przewysza model AR-FIAGARCH(,d,). Kryerium wykorzysujce jednak es LRT w jednoznaczny sposób (dla warunkowego rozkładu normalnego: LRT=,64, naomias waro kryyczna esu dla poziomu isonoci 0,05 wynosi 3,84) preferuje model prosszy. Kadorazowo odpowiedni model z warunkowym rozkładem -Sudena (o grubszych ogonach ni dla rozkładu normalnego) przewysza model z warunkowym rozkładem normalnym (zakłada si, e modele z warunkowym rozkładem normalnym zawieraj si w analogicznych modelach z warunkowym rozkładem -Sudena, a rónica w liczbie resrykcji wynosi ). Tabela. Uzyskane saysyki poszczególnych modeli rozkład liczba model LLF warunkowy paramer. AIC AR(0)-GARCH(0,0) 589,4-5,8 AR()-GARCH(0,0) 5839,83 3-5,990 AR()-GARCH(0,0) 5839,43 4-5,98 AR()-GARCH(0,) 5959,4 4-5,4065 rozkład normalny N(0,) symer. rozkł. -Sudena -S(0,,v) ródło: obliczenia własne. AR()-GARCH(0,5) 6049,3 8-5,4845 AR()-GARCH(,) 6060,9 5-5,4973 AR()-PGARCH(,) 6060,4 6-5,4965 AR()-AGARCH(,) 6063,4 6-5,4990 AR()-APGARCH(,) 6063,6 7-5,498 AR()-FIGARCH(,d,) 606,66 6-5,4985 AR()-FIPGARCH(,d,) 6064, 7-5,4989 AR()-FIAGARCH(,d,) 6065,76 7-5,5005 AR()-FIAPGARCH(,d,) 6067,08 8-5,5007 AR()-FIGARCH(,d,) 6090,7 7-5,57 AR()-FIPGARCH(,d,) 609,4 8-5,58 AR()-FIAGARCH(,d,) 609,60 8-5,530 AR()-FIAPGARCH(,d,) 609,94 9-5,533

15 Osaecznie mona przyj, e najlepszym modelem (sporód rozparywanych) opisujcym szereg sóp zwrou z indeksu WIG jes model AR()-FIAGARCH(,d,) z warunkowym rozkładem -Sudena, kóry umoliwia uwzgldnienie wszyskich opisywanych efeków wyspujcych w szeregach sóp zwrou. Paramer δ w modelu ym nie jes esymowany i wynosi, co oznacza, e dla indeksu WIG najlepszym modelem jes model opisujcy warunkowe wariancje. Dla innych insrumenów obserwuje si, i opymalna waro parameru δ zawiera si w przedziale od około,3 do,75 (por. Higgins, Bera (99), Ding, Granger, Engle (993), Tse (998)) i nie mona wedy mówi wpros ani o warunkowym odchyleniu sandardowym, ani o warunkowych wariancjach. Wybrany model, po wyesymowaniu paramerów moe by przydany w prognozowaniu zmiennoci, wycenie opcji, czy pomiarze ryzyka meod Value a Risk Lieraura Baillie R., Bollerslev T., Mikkelsen H. (996). Fracionally Inegraed Generalized Auoregressive Condiional Heeroskedasiciy. Journal of Economerics, 74, s Bollerslev T. (986). Generalized auoregressive condiional heeroskedasiciy. Journal of Economerics, 3, s Bollerslev T., Engle R., Nelson D. (994). ARCH models (w: Engle, MacFadden, Handbook of economerics). Norh-Holland, Amserdam Box G., Jenkins J. (986). Analiza szeregów czasowych. Prognozowanie i serowanie. Paswowe Wydawnicwo Naukowe, Warszawa. Ding Z., Granger C. (996). Modeling volailiy persisence of speculaive reurns: A new approach. Journal of Economerics, 73, s Ding Z., Granger C., R. Engle. (993). A long memory propery of sock marke reurns a new model. Journal of Empirical Finance,, sr Engle R. (98). Auoregressive condiional heeroskedasiciy wih esimaes of he variance of UK inflaion. Economerica, 50, s Engle R., Ng V. (993). Measuring and esing he impac of news on volailiy. Journal of Finance, 48, sr Gourieroux C. (997). ARCH Models and Financial Applicaions, Springer Verlag, New York Higins M., Bera A. (99). A class of nonlinear ARCH models. Inernaional Economic Review, 33, sr. 7-04

16 Jajuga K. (999). Nowe endencje w zarzdzaniu ryzykiem finansowym, Rynek Terminowy, 3, Peneraor, Kraków Jajuga K. (000). Meody ekonomeryczne i saysyczne a analizie rynku kapiałowego. Wydawnicwo Akademii Ekonomicznej we Wrocławiu, Wrocław (pod red.) Pionek K. (00) Modelowanie i prognozowanie zmiennoci insrumenów finansowych. Akademia Ekonomiczna we Wrocławiu. Wrocław (rozprawa dokorska) Pionek K. (003). Modelowanie długiej pamici w szeregach zmiennoci sóp zwrou. Konferencja Modelowanie Preferencji a Ryzyko. Usro, (w druku) Tsay R. (00). Analysis of Financial Time Series. Wiley and Sons. Chicago Tse Y. (998). The condiional heeroskedasiciy of he yen-dolar exchange rae. Journal of Applied Economerics, 3, sr

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Modelowanie "długotrwałej pamici" szeregów zmiennoci

Modelowanie długotrwałej pamici szeregów zmiennoci Krzyszof Pionek Kaera Inwesyci Finansowych i Ubezpiecze Akaemia Ekonomiczna we Wrocławiu Moelowanie "ługorwałe pamici" szeregów zmiennoci Wsp Cech charakerysyczn nowoczesnego zarzzania ryzykiem sało si

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

WERYFIKACJA WYBRANYCH TECHNIK PROGNOZOWANIA ZMIENNOCI ANALIZA SZEREGÓW CZASOWYCH

WERYFIKACJA WYBRANYCH TECHNIK PROGNOZOWANIA ZMIENNOCI ANALIZA SZEREGÓW CZASOWYCH PRACE NAUKOWE AKADEII EKONOICZNEJ WE WROCŁAWIU Nr 99 2003 Inwesycje finansowe i ubezpieczenia endencje wiaowe a polski rynek Krzyszof Pionek Akadeia Ekonoiczna we Wrocławiu WERYFIKACJA WYBRANYCH TECHNIK

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 KATARZYNA KUZIAK Akademia Ekonomiczna Wrocław POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska A.02.2 Jerzy Czesław Ossowski Kaedra Ekonomii i Zarzdzania Przedsibiorswem Wydział Zarzdzania i Ekonomii Poliechnika Gdaska Marcin Judycki Dresdner Kleinwor Wassersein - London VII Seminarium Naukowe Kaedry

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński Ćwiczenia 3 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Giełdy Papierów Wartościowych w Warszawie

Giełdy Papierów Wartościowych w Warszawie SZKOŁA GŁÓWNA HANDLOWA W WARSZAWIE STUDIUM DYPLOMOWE KIERUNEK: Meody Ilościowe i Sysemy Informacyjne Michał Rubaszek Nr alb. 5346 Arbiraż cenowy na przykładzie Giełdy Papierów Warościowych w Warszawie

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

Izolacja Anteny szerokopasmowe i wskopasmowe

Izolacja Anteny szerokopasmowe i wskopasmowe Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska A.07.3 Jerzy Czesław Ossowski Kaedra Ekonomii i Zarzdzania Przedsibiorswem Wydział Zarzdzania i Ekonomii Poliechnika Gdaska XII Seminarium Naukowe Kaedry Ekonomii i Zarzdzania Przedsibiorswem Poliechniki

Bardziej szczegółowo

JERZY CZ. OSSOWSKI Politechnika Gdaska Katedra Ekonomii i Zarzdzania Przedsibiorstwem

JERZY CZ. OSSOWSKI Politechnika Gdaska Katedra Ekonomii i Zarzdzania Przedsibiorstwem JERZY CZ. OSSOWSKI Poliechnika Gdaska Kaedra Ekonomii i Zarzdzania Przedsibiorswem IV Ogólnopolskie Seminarium Naukowe n. Dynamiczne Modele Ekonomeryczne, Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja

Bardziej szczegółowo

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI ACTA UNIVERSITATIS NICOLAI COPERNICI DOI: hp://dx.doi.org/10.12775/aunc_econ.2014.017 EKONOMIA XLV nr 2 (2014) 275 288 Pierwsza wersja złożona 26 czerwca 2014 ISSN Końcowa wersja zaakcepowana 20 grudnia

Bardziej szczegółowo

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 *

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 1 2010 AGATA KLIBER, PAWEŁ KLIBER ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * 1. WSTĘP Celem niniejszego badania było zbadanie zależności

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Ocena dochodu i ryzyka inwestycji w akcje spółek z branży TSL notowanych na GPW w Warszawie 2

Ocena dochodu i ryzyka inwestycji w akcje spółek z branży TSL notowanych na GPW w Warszawie 2 Anea Włodarczyk 1 Poliechnika Częsochowska Ocena dochodu i ryzyka inwesycji w akcje spółek z branży TSL noowanych na GPW w Warszawie Wprowadzenie Globalizacja rynku usług TSL (Transpor, Spedycja, Logisyka)

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ Agaa Kliber * Pior Płuciennik ** Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzysaniem insrumenów SWAP na POLONIĘ Wsęp Problemem polskiej bankowości jes duża nadpłynność. Banki niechęnie

Bardziej szczegółowo

ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI

ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI Marcin Brycz ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI Wprowadzenie Blisko pięćdziesią la ocząca się dyskusja nad krzywą Phillipsa nabrała nowego rozmachu od czasu publikacji

Bardziej szczegółowo

Argumenty na poparcie idei wydzielenia OSD w formie tzw. małego OSD bez majtku.

Argumenty na poparcie idei wydzielenia OSD w formie tzw. małego OSD bez majtku. Warszawa, dnia 22 03 2007 Zrzeszenie Zwizków Zawodowych Energetyków Dotyczy: Informacja prawna dotyczca kwestii wydzielenia Operatora Systemu Dystrybucyjnego w energetyce Argumenty na poparcie idei wydzielenia

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Dodatek 2. Wielowymiarowe modele GARCH

Dodatek 2. Wielowymiarowe modele GARCH Dodatek 2. Wielowymiarowe modele GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 2) Modele MGARCH 1 / 15 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu MGARCH {y t }: y

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Redakor

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Empiryczna

Bardziej szczegółowo

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary Anna Górska 1 Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych Szkoła Główna Gospodarswa Wiejskiego Warszawa Zasosowanie narzędzi analizy echnicznej w bezpośrednim i pośrednim inwesowaniu

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo