OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR"

Transkrypt

1 Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała się warość zagrożona (warość narażona na ryzyko, Value a Risk lub w skrócie VaR). Definicja warości zagrożonej VaR ( α,) z poziomem olerancji α dla usalonego czasu jes nasępująca [1; 7]: ( S S VaR( α ) ) = α P 0,, (1) gdzie: S 0, S warość począkowa i końcowa procesu ceny insrumenu finansowego (porfela), α poziom olerancji (poziom isoności) dla szacowanej warości VaR. Warość zagrożona o aka sraa warości insrumenu finansowego, że sray większe lub równe VaR mogą wysąpić z zadanym prawdopodobieńswem (poziomem olerancji) α. W arykule opisano model opymalizacji srukury porfela inwesycyjnego, w kórym dla założonego poziomu akcepowalnej sray (warości zagrożonej) minimalizowano poziom olerancji α (czyli prawdopodobieńswo, że sray w porfelu będą większe od założonej). Rozkłady użye do opisu logarymicznej sopy zwrou z porfela były rozkładami empirycznymi wyznaczanymi meodą hisoryczną (na podsawie danych hisorycznych) oraz jej rozszerzeniem uwzględniającym jednodniową pamięć. Pamięć modelowano procesem Markowa [2; 3; 6], w kórym san był deerminowany znakiem osaniej sopy zwrou.

2 50 Daniel Iskra 1. Tes zgodności poziomu olerancji warości zagrożonej Weryfikację, czy prognozowany poziom olerancji α (dla usalonego poziomu warości zagrożonej) jes zgodny z rzeczywisym prawdopodobieńswem, można oprzeć na szeregu przekroczeń VaR. iech I będzie zmienną zero-jedynkową, kóra przyjmuje warość 1 z prawdopodobieńswem α ( P( = 1) = α ), jeżeli spadek warości porfela jes I równy lub większy od usalonej warości VaR w dniu i 0 w przeciwnym przypadku ( P( = 0) = 1 α ). ależy podkreślić, że dla usalonej warości VaR I (jednakowej dla każdego ), prawdopodobieńswo α w każdym dniu może być i w prakyce jes różne. Konsrukcję esu weryfikującego, czy poziom olerancji α (warość eoreyczna obliczona na podsawie przyjęego w pracy modelu) jes zgodny z rzeczywisym prawdopodobieńswem przekroczeń usalonej warości VaR, oparo na porównaniu isonych różnic pomiędzy oczekiwanym odsekiem przekroczeń a średnim odsekiem przekroczeń (policzonym z próby). Rozparując -elemenowy szereg ( dni), warość oczekiwaną ilości przekroczeń usalonej warości VaR zapisuje się jako: naomias: E [ = 1 I ] = = α 1, (2) 1 1 E[ I = = ] α 1 = 1 (3) * jes oczekiwanym odsekiem ilości przekroczeń usalonej warości zagrożonej w ciągu dni. Przez I oznaczono funkcję przyjmującą warość 1, jeżeli w dniu zaobserwowano przekroczenie usalonej warości VaR (ex pos), i zero w przeciwnym przypadku. Wówczas średnia warość odseka przekroczeń policzona z -elemen-owej próby ( dni) jes opisana wzorem: 1 = 1 I *. (4) Sąd eż w przeprowadzonym eście hipoeza zerowa ma posać: 1 * 1 H 0 : I = [ ] = 1 E I = 1, (5)

3 Opymalizacja porfela inwesycyjnego ze względu na minimalny poziom 51 gdzie: ilość próbek użyych w eście. Opisana hipoeza zerowa zakłada, że rzeczywisy odseek przekroczeń policzony z próby nie różni się isonie od warości eoreycznej. Saysyka użya w opisywanym eście przyjmuje posać: 1 * 1 I [ = 1 E 1 D[ I = 1 ] = 1 I ], (6) gdzie: E ( ), D ( ) warość oczekiwana i odchylenie sandardowe. Jeżeli przyjmie się, że suma zmiennych losowych (niezależnych) I ma asympoyczny rozkład normalny, wówczas saysyka (6) opisywanego esu powinna pochodzić z zesandaryzowanego rozkładu normalnego (0,1). 2. Efek pamięci modelowany procesem Markowa W badaniach efek pamięci modelowano procesem Markowa, w kórym san rynku był określony znakiem osaniej logarymicznej sopy zwrou (badania oparo na jednodniowych logarymicznych sopach zwrou) [4; 5]. W zależności od sanu rynku (od znaku osaniej logarymicznej sopy zwrou) kolejna sopa zwrou pochodzi z innego rozkładu. Dla insrumenów finansowych noowanych na polskim rynku należy wyróżnić rzy sany [4; 5]: minus gdy osania odnoowana sopa zwrou ma znak ujemny, zero gdy osania odnoowana sopa zwrou jes równa zero, plus gdy osania odnoowana sopa zwrou ma znak dodani. Wprowadzenie sanu zero jes uzasadnione ze względu na ilość wysąpień sopy zerowej w hisorycznych noowaniach insrumenów (na GPW w Warszawie), kóra jes saysycznie isona. Zazwyczaj w 75% badanych spółek wysępuje co najmniej 8% sóp zerowych [4; 5]. Aby móc rozważać wysępowanie efeku pamięci w insrumenach finansowych, należy zdefiniować, jak jes rozumiane pojęcie pamięci [4; 5]: Powiemy, że wysępuje efek pamięci, jeżeli przynajmniej dwa rozkłady sóp zwrou będą isonie różne od siebie. Jeżeli rozkłady sóp zwrou w każdym sanie nie są saysycznie isonie różne od pozosałych rozkładów, wówczas powiemy, że nie wysępuje efek pamięci.

4 52 Daniel Iskra W opisywanym podejściu szereg logarymicznych sóp zwrou dzieli się na rzy rozkłady: minus, zero i plus (nazwy analogiczne do sanów). Każdy z ych rzech rozkładów składa się z części ciągłej i części dyskrenej w zerze (aom w zerze). W każdej parze rozkładów porównywano ze sobą części ciągłe i części dyskrene. Powiemy, że wysąpiła isona różnica pomiędzy dwoma rozkładami sóp zwrou w dwóch różnych sanach, jeżeli wysąpiła isona różnica pomiędzy częściami ciągłymi lub pomiędzy częściami dyskrenymi ych rozkładów [4; 5]. Wysępowanie opisanego powyżej efeku pamięci sprawdzono dla badanych insrumenów. Do symulacji wybrano insrumeny finansowe (akcje) noowane na Giełdzie Papierów Warościowych w Warszawie w okresie od począku 2000 roku do końca 2011 roku, kórych średnia ilość noowań w badanym okresie wynosiła co najmniej 240 na rok. Do weryfikacji isonych różnic pomiędzy ciągłymi częściami rozkładów użyo esu Kołmogorowa-Smirnowa [8] z poziomem isoności 0,05, pomiędzy dyskrenymi częściami rozkładów esu wskaźnika srukury [8] również z poziomem isoności 0,05. W abeli 1 przedsawiono srukurę isonych różnic pomiędzy poszczególnymi rozkładami. Można było zaobserwować brak isonych różnic (brak pamięci) do 6 isonych różnic (różnice w 3 parach części ciągłych i 3 parach części dyskrenych). Ilość isonych różnic pomiędzy rozkładami Ilość isonych różnic Ilość insrumenów Odseek insrumenów 0 2 2,44% 1 3 3,66% ,39% ,83% ,27% ,20% 6 1 1,22% Tabela 1 Z abeli 1 wynika, iż efek pamięci zaobserwowano w około 97% spółek; ylko w 2 insrumenach (z 82) pamięci nie zaobserwowano. Podobne wyniki były obserwowane we wcześniejszych badaniach. Zazwyczaj najwięcej obserwowano 2 lub 3 isone różnice pomiędzy rozkładami, a akże nieznacznie większą ilość różnic pomiędzy dyskrenymi częściami rozkładów niż ich częściami ciągłymi. Opisywany przypadek akże nie odbiega od ego schemau. Opisany model można zasosować również do porfela inwesycyjnego. W arykule w modelowaniu efeku pamięci porfela wyróżniono ylko dwa sany: minus i plus. W pojedynczej spółce wysępowało średnio około 13%

5 Opymalizacja porfela inwesycyjnego ze względu na minimalny poziom 53 sóp zerowych w badanym okresie, co przekłada się w przypadku porfela dwuskładnikowego na średnio około 1,7% sóp zerowych. Skukiem małej ilości danych w sanie zero są gorsze wyniki (badania empiryczne) niż w przypadku modelu z dwoma sanami: minus i plus. Sąd eż w arykule zrezygnowano ze sanu zerowego w przypadku porfela inwesycyjnego. Jeżeli jednak wysąpiła sopa zerowa, przydzielano ją losowo do jednego z rozkładów minus lub plus (obecnie oba rozkłady są ciągłe, nie ma w ym przypadku części dyskrenych w zerze). Zważywszy na fak, iż w porfelu inwesycyjnym wysępują ylko dwa sany: minus i plus i oba rozkłady w ych sanach są ciągłe, isnieje największa szansa wysąpienia efeku pamięci w porfelu, jeżeli wysępują isone różnice pomiędzy ciągłymi częściami rozkładów minus i plus insrumenów wchodzących w jego skład. Badania wykazują, że pamięć insrumenów w ym przypadku przenosi się na porfel inwesycyjny (dwuskładnikowy) w około 50% symulacji. Jeżeli rozkłady wyznaczano w porfelach zawierających spółki bez pamięci, efek pamięci wysępował bardzo rzadko lub wcale. W pozosałych przypadkach wyniki były pośrednie. 3. Efek pamięci modelowany procesem Markowa minimalizacja poziomu olerancji dla usalonej warości VaR Opisany model zosanie użyy do wyznaczania srukury porfela inwesycyjnego o minimalnej olerancji α dla usalonej jednodniowej warości zagrożonej (dokładniej dla względnej warości zagrożonej w sosunku do począkowej warości porfela, kóra dalej będzie oznaczana jako wzvar). Zosanie on porównany z ypowym modelem, w kórym rozkłady empiryczne wyznacza się na podsawie danych hisorycznych, nie uwzględniając efeku pamięci. Modele e w dalszej części będą króko nazywane modelem z pamięcią i modelem bez pamięci. a porzeby symulacji skonsruowano 50 porfeli o losowo dobranych dwóch spółkach. Dla każdego z 50 porfeli inwesycyjnych minimalizację poziomu olerancji przeprowadzono dla warości wzvar usalonej na poziomie 0,01, 0,03 oraz 0,05. Empiryczne rozkłady sóp zwrou dla każdego możliwego składu porfela (w obu przypadkach, model z pamięcią i bez pamięci) wyznaczano na podsawie 250 oraz 500 noowań. W symulacjach dla każdego możliwego składu porfela wyznaczano rozkład logarymicznych sóp zwrou, nasępnie na jego podsawie poziom olerancji dla usalonej jednodniowej względnej warości zagrożonej. Skład porfela zmieniano co 1%, czyli co 1 akcję, zakładając, że w porfelu jes w sumie 100 akcji. Urzymując sały sosunek ilości akcji jednej spółki do ilości akcji drugiej spółki, można orzymać porfel o dowolnej warości począkowej i zawsze akich samych sopach zwrou. Kolejnym eapem

6 54 Daniel Iskra był wybór składu, dla kórego poziom olerancji α był minimalny. Jeżeli rozkład sóp zwrou był wyznaczany np. z 250 danych, wówczas jego posać była urzymywana przez kolejne 10 dni (z 500 danych przez 20 dni). Po ich upływie szereg noowań przesuwano o 10 dni (20 dni) i procedurę powarzano od począku. W modelu uwzględniającym pamięć procedura opymalizacji srukury porfela była analogiczna. Różnica kwiła w wyznaczaniu dwóch rozkładów logarymicznych sóp zwrou porfela: plus i minus. asępnie sprawdzano, czy rozkłady e isonie się różnią, zn. czy wysępuje pamięć (za pomocą esu Kołmogorowa-Smirnowa z poziomem isoności 0,05). Jeżeli dla danej srukury porfela nie wysępowała pamięć, porfel o ej srukurze pomijano. Z wszyskich możliwych składów porfela, dla kórych zaobserwowano pamięć, wybierano porfel o minimalnym poziomie olerancji α. Do weryfikacji zgodności oszacowanego minimalnego poziomu olerancji użyo esu opisanego w rozdziale 2 z poziomem isoności 0,05. Z przeprowadzonych badań wynika, że najlepsze wyniki uzyskano odpowiednio w przypadku modelu z pamięcią konsruowanego na podsawie 250 logarymicznych sóp zwrou i dla modelu nieuwzględniającego pamięci na podsawie 500 logarymicznych sóp zwrou. Uzasadnione będzie zaem porównanie ych dwóch przypadków. W abeli 2 przedsawiono syneyczne wyniki, odseek porfeli, w kórych minimalny poziom olerancji α dla usalonego wzvar (VaR w sosunku do warości począkowej porfela) był pozyywnie zweryfikowany z poziomem isoności 0,05 (za pomocą esu opisanego w rozdziale 2). Zgodność prognoz poziomu olerancji. Porównanie Tabela 2 Odseek porfeli, w kórych poziom olerancji przeszedł pozyywnie es zgodności (wzvar względna warość VaR do począkowej warości porfela) Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.01 ) (500 DAYCH) (250 DAYCH) 52% 70% Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.03) (500 DAYCH) (250 DAYCH) 58% 86% Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.05) (500 DAYCH) (250 DAYCH) 68% 88%

7 Opymalizacja porfela inwesycyjnego ze względu na minimalny poziom 55 a podsawie uzyskanych wyników można swierdzić, że model uwzględniający pamięć zdecydowanie lepiej prognozuje (co do esu zgodności) poziom olerancji warości zagrożonej. Uzyskane wyniki o od 70% do 88% porfeli, kórych prognozy poziomu olerancji były zgodne z rzeczywisym prawdopodobieńswem przekroczenia usalonej warości zagrożonej. W modelu bez pamięci odseek porfeli o pozyywnie zweryfikowanym poziomie olerancji wynosi od 52% do 68%. Model z pamięcią ma ę przewagę, iż wykorzysuje efek pamięci, czyli różnicę pomiędzy rozkładami konsruowanymi na podsawie znaku osanio zaobserwowanej sopy zwrou. Oba modele są nieparameryczne, co jes niewąpliwie zarówno ich zaleą (pomija się esymację paramerów), jak i wadą. Cała informacja o rozkładzie sóp zwrou, kóra jes dosępna za pomocą empirycznej dysrybuany, doyczy danych zawarych pomiędzy minimalną i maksymalną sopą zwrou zaobserwowaną w okresie, z kórego wyznaczano rozkłady. ie są uwzględniane poencjalne skrajne warości, kóre eoreycznie mogą wysąpić, a kórych doąd nie zaobserwowano. W abeli 3 przedsawiono wyniki kolejnych symulacji, w kórych część danych empirycznych (lewy ogon) był aproksymowany ogonem rozkładu normalnego. Podano najlepsze wyniki dla modelu z pamięcią i bez pamięci dla poszczególnych względnych warości zagrożonych. Modelowanie przeprowadzano dla lewego ogona rozkładu empirycznego do kwanyla 25% w przypadku usalonej warości wzvar = 0,03 i wzvar = 0,05 oraz do kwanyla 50% w przypadku wzvar = 0,01 (w ym przypadku prawdopodobieńswo spadku warości porfela większego od usalonego 1% zazwyczaj było większe niż 0,25). Paramery warunkowych rozkładów eoreycznych szacowano meodą największej wiarygodności, esując każdorazowo zgodność dopasowania rozkładu warunkowego do danych empirycznych. Tesy oparo na saysyce Kołmogorowa-Smirnowa wyznaczanej meodą Mone-Carlo na podsawie 5000 symulacji. Zgodność prognoz poziomu olerancji. Porównanie Tabela 3 Model, w kórym lewy ogon rozkładów empirycznych aproksymowano warunkowym rozkładem normalnym Odseek porfeli, w kórych poziom olerancji przeszedł pozyywnie es zgodności (wzvar względna warość VaR do począkowej warości porfela) Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.01 ) (500 DAYCH) (250 DAYCH) 78% 70% Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.03)

8 56 Daniel Iskra cd. abeli 3 (250 DAYCH) (250 DAYCH) 92% 88% Zgodność prognoz poziomu olerancji (dla poziomu wzvar = 0.05) (250 DAYCH) (250 DAYCH) 58% 72% Symulacje wykazały, że modelowanie ogona rozkładu empirycznego rozkładem normalnym w modelu z pamięcią nie wpłynęło pozyywnie na wyniki, wręcz nawe zosały one nieznacznie pogorszone. Zdecydowanie poprawiły się naomias wyniki uzyskane z modelu bez pamięci. Jeżeli rozkłady empiryczne były wyznaczane na podsawie 250 sóp zwrou, odseek porfeli o pozyywnie zweryfikowanym poziomie olerancji wzrósł do warości od 66% do 92%. Można swierdzić, że model bez pamięci z ogonami modelowanymi rozkładem normalnym daje równie dobre rezulay, jak model z pamięcią (nieparameryczny, bez modelowania ogona rozkładu). W obu modelach (nieparamerycznym z pamięcią i bez pamięci z ogonami normalnymi) do wyznaczania rozkładów empirycznych sóp zwrou w prawie wszyskich przypadkach należało użyć 250 danych. Można porównać obie meody ze względu na odseek czasu, w kórym można było aplikować oba modele. ieznaczna przewaga jes na korzyść modelu z pamięcią, w kórym średnio w 80% dni badanego okresu można było go zasosować (w ylu przypadkach wysąpił efek pamięci) w porównaniu do około 70% dla modelu bez pamięci (w ylu przypadkach można było użyć rozkładu normalnego do modelowania ogona rozkładu empirycznego, co do esów zgodności rozkładów). Podsumowanie iniejszy arykuł koncenruje się na wykorzysaniu warości zagrożonej w opymalizacji srukury porfela inwesycyjnego. Przedsawiono w nim sraegię opymalizacji srukury porfela inwesycyjnego ze względu na minimalny poziom olerancji usalonej warości zagrożonej. Do opisania rozkładów logarymicznej sopy zwrou z porfela zosały użye rozkłady empiryczne szacowane meodą hisoryczną oraz jej rozszerzeniem uwzględniającym jednodniową pamięć. W przypadku wyznaczania minimalnej warości zagrożonej na podsawie kwanyla rozkładu empirycznego w modelu z pamięcią, model en wykazuje się dobrą skuecznością (pomiędzy 70% a 88%, zależy od usalonego poziomu

9 Opymalizacja porfela inwesycyjnego ze względu na minimalny poziom 57 wzvar). W modelu bez pamięci dopiero próba modelowania ogona rozkładu empirycznego rozkładem normalnym znacząco poprawiła prognosyczne własności modelu (skueczność pomiędzy 66% a 90%). Można akże nadmienić, że nieparameryczny model z pamięcią przełącza się całkowicie losowo pomiędzy rozkładami minus i plus. Lieraura 1. Alexander C., Marke Risk Analysis: Value a Risk Models, Vol. IV, John Wiley & Sons, England Gillespie D.T., Markov Processes. An Inroducion for Physical Scieniss, Academic Press IC., San Diego Iosifescu M., Skończone procesy Markowa i ich zasosowania, PW, Warszawa Iskra D., Czernik T., Warość zagrożona insrumenu z uwzględnieniem efeku pamięci modelowanym wielosanowym procesem Markowa. Badania symulacyjne, w: Maemayczne aspeky ekonomii. Ryzyko reasekuracja równowaga, red. W. Kulpa, Wydawnicwo Uniwersyeu Kardynała Sefana Wyszyńskiego, Warszawa Iskra D., Czernik T., Jednookresowy efek pamięci modelowany rzysanowym procesem Markowa. Analiza insrumenów noowanych na GPW w Warszawiei, w: Inwesycje finansowe i ubezpieczenia endencje świaowe a polski rynek, red. W. Ronka-Chmielowiec, K. Jajuga, Wydawnicwo Uniwersyeu Ekonomicznego, Wrocław Kowalenko I.., Kuzniecow.J., Szurienkow W.M., Procesy sochasyczne, PW, Warszawa 1989, 7. Wilmo P., Paul Wilmo On Quaniive Finance, Vol. 1, John Wiley & Sons, England Wywiał J., Wprowadzenie do wnioskowania saysycznego, Wydawnicwo Akademii Ekonomicznej, Kaowice 2004.

10 58 Daniel Iskra THE MIIMUM LEVEL OF SIGIFICACE FOR FIXED VaR PORTFOLIO OPTIMIZATIO Summary The paper presens he opimizaion of securiies porfolio. Taking ino accoun level of accepance α for fixed Value a Risk he opimizaion concerns he porfolio srucure. The paper proposes a modeling of he memory effec using he muli-sae Markov process where he sae is deermined by he sign of he las hisorical growh rae.

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

ANALIZA RYZYKA NA RYNKU NORD POOL SPOT

ANALIZA RYZYKA NA RYNKU NORD POOL SPOT Alicja Ganczarek-Gamro Dominik Krężołek Uniwersye Ekonomiczny w Kaowicach ANALIZA RYZYKA NA RYNKU NORD POOL SPOT Wprowadzenie Rynek owarowy można zdefiniować jako pewien sysem, w kórym nasępuje konfronacja

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO 120 Krzyszof STOWARZYSZENIE Gajowniczek, Tomasz Ząbkowski, EKONOMISTÓW Michał Goskowski ROLNICTWA I AGROBIZNESU Roczniki Naukowe om XVI zeszy 6 Krzyszof Gajowniczek, Tomasz Ząbkowski, Michał Goskowski

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU Arykuł opublikowany w: Rynki kapiałowe a koniunkura gospodarcza, red. A. Szablewski, R. Wójcikowski, Wydawnicwo Poliechniki Łódzkiej, Łódź 009, s. 95-07 Doroa Wiśniewska Uniwersye Ekonomiczny w Poznaniu

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA POLSKIEGO I AMERYKAŃSKIEGO RYNKU KAPITAŁOWEGO W UJĘCIU PROCESÓW MARKOWA

ANALIZA PORÓWNAWCZA POLSKIEGO I AMERYKAŃSKIEGO RYNKU KAPITAŁOWEGO W UJĘCIU PROCESÓW MARKOWA Tadeusz Czernik Daniel Iskra Uniwersytet Ekonomiczny w Katowicach ANALIZA PORÓWNAWCZA POLSKIEGO I AMERYKAŃSKIEGO RYNKU KAPITAŁOWEGO W UJĘCIU PROCESÓW MARKOWA Wprowadzenie Przedmiotem badań współczesnej

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne MATERIAŁY I STUDIA Zeszy nr 58 Podaność polskich rynków finansowych na niesabilności wewnęrzne i zewnęrzne Wojciech Bieńkowski, Bogna Gawrońska-Nowak, Wojciech Grabowski Warszawa, 0 r. Wojciech Bieńkowski

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

REGULAMIN FUNDUSZU ROZLICZENIOWEGO

REGULAMIN FUNDUSZU ROZLICZENIOWEGO REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 GRZEGORZ MICHALSKI POZIOM ZAANGAŻOWANIA KAPITAŁU W ZAPASACH W ORGANIZACJACH NON-PROFIT * Wprowadzenie

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych 1 Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo