WNIOSKOWANIE STATYSTYCZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "WNIOSKOWANIE STATYSTYCZNE"

Transkrypt

1 Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony Rozważmy nasępujące formy funkcyjne echnologii: Funkcja ranslogarymiczna: ln Q α ln ( ) 4 ( ln ) ln () Funkcja Cobba i Douglasa (poęgowa): ln Q α ln () Funkcja o sałej elasyczności subsyucji (CES): ν [ δ K + ( δ ) ] Q γ () (Uwaga! powyżej podajemy deerminisyczną posać echnologii, z pominięciem składników losowych, dane są przykładowe posacie funkcji dwuczynnikowych z wielkościami nakładów oznaczonymi jako K oraz ) W zasosowaniach ekonomerycznych możemy zbudować nasępujące równania obserwacji (po uwzględnieniu specyfikacji sochasycznej oraz dodakowo z dynamizacją [ylko dla danych w posaci szeregów czasowych]): Dla funkcji ranslogarymicznej: ln Q α ln ( ) 4 ( ln ) ln + τ + ε (4) Dla funkcji Cobba i Douglasa (poęgowej): ln Q α ln + τ + ε () Funkcja o sałej elasyczności subsyucji (CES): ν ln Q lnγ + ln[ δk + ( δ ) ] + τ + ε. (6) Jeśli możemy założyć, iż ε ~ iin (, σ ), o równania (4) oraz () spełniają założenia Klasycznego Modelu Normalnej Regresji iniowej, zaś równanie (6) spełnia założenia Modelu Normalnej Regresji Nieliniowej. Gdy mamy do czynienia z danymi przekrojowymi (lub nie chcemy rozważać funkcji zdynamizowanej), pomijamy...+τ Załóżmy, że przyjęo nasępującą kolejność w wekorze paramerów [i co za ym idzie, odpowiednio w x dla równania (4) oraz () oraz w A (β ) dla równania (6)]: -dla funkcji ranslogarymicznej (4): [ α α α α α α τ ] β 4 ' (7)

2 Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / -dla funkcji Cobba i Douglasa (): β [ α α α τ ] -dla funkcji CES (6): [ γ δ ν τ ] ' (8) β ' (9) Po dokonaniu esymacji dysponujemy ocenami paramerów MNK: βˆ [dla f. CES (6) są o oceny nieliniowej MNK] oraz oszacowaną macierzą kowariancji esymaora: V ˆ ( βˆ ) [dla f. CES (6) V βˆ ]. mamy oszacowaną asympoyczną macierz kowariancji esymaora nieliniowej MNK: ( ) Rozważmy zasosowania znanych nam możliwości wnioskowania saysycznego w KMNR oraz MNRN. Możliwość redukcji modelu: Możemy się zasanawiać, czy dane dopuszczają możliwość zasąpienia wykorzysywanej formy funkcyjnej przez formę prosszą. W szczególności: Dla funkcji CES (6) zauważamy, że przy funkcja CES ma własności funkcji Cobba i Douglasa. W związku z ym hipoezę o zerowaniu się parameru możemy inerpreować w przybliżeniu jako es redukcji funkcji CES do funkcji Cobba i Douglasa. Parę hipoez: (H : ; H : ) esujemy esem -Sudena. Dla funkcji ranslogarymicznej (6) zauważamy, że gdy równocześnie wyzerujemy paramery α, α 4, α, o orzymamy funkcję Cobba i Douglasa. Parę hipoez: (H : α α 4 α ; H : α α 4 α ) esujemy esem F. W powyższych przypadkach modelowi prosszemu (funkcji Cobba i Douglasa) odpowiada hipoeza zerowa. Pamięajmy, że wynik esu brak podsaw do odrzucenia H nie oznacza, iż musimy ją przyjąć nie można auomaycznie wyniku esu przenosić na decyzję o redukcji modelu, jednakże wynik esu może być isoną przesłanką akiej decyzji. Wobec ego w przypadku braku podsaw do odrzucenia H możemy zredukować formę CES lub funkcję ranslogarymiczną do formy Cobba i Douglasa. Wnioskowanie o współczynniku posępu echniczno-organizacyjnego: Możemy każdorazowo esować zasadność wprowadzenia dynamizacji (co można inerpreować jako badanie wysępowania isonego posępu/regresu echniczno-organizacyjnego). Odpowiada o oczywiście esowaniu isoności parameru τ, do czego wykorzysamy es ypu -Sudena. Podobnie możemy dokonać esymacji przedziałowej parameru τ, wykorzysując sandardowy sposób posępowania. Wnioskowanie o elasycznościach produkcji względem wielkości nakładów: W przypadku funkcji Cobba i Douglasa () orzymujemy: ElQ / K α. Wobec ego E lˆ Q / K ˆ α, D( Elˆ Q / K ) D( ˆ α ) wyliczamy sandardowo i możemy sandardowymi echnikami prowadzić zarówno esymację przedziałową ej elasyczności, jak i weryfikować parę hipoez ypu: (H : El Q/K x*; H : El Q/K x*) esem - Sudena [x* oznacza pewną usaloną, ineresującą nas warość, np. ] ˆas

3 Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / W przypadku funkcji ranslogarymicznej () orzymujemy: ElQ / K α ln. Wobec ego Elˆ Q ˆ ˆ ˆ / K α * ln * [gdzie K* oraz * o pewne ineresujące nas znane, nielosowe wielkości nakładów], zaś aby wyliczyć D ( El ˆ Q / K ) odwołujemy się do wnioskowania o liniowej funkcji współczynników regresji: przyjmujemy: ψ c β α * ln * ' gdzie (por. (7)): c [ lnk* ln* ]]. Dalej sandardowo wyliczamy D( Elˆ Q / K ) D( ψˆ ) i możemy zwykłymi echnikami prowadzić zarówno esymację przedziałową ej elasyczności, jak i weryfikować parę hipoez ypu: (H : El Q/K x*; H : El Q/K x*) esem - Sudena. W przypadku funkcji CES mamy: Q(.) K νδk ElQ/ K K Q(.) δ K + δ ( ) Co prawda ocenę punkową elasyczności możemy ławo orzymać wsawiając do powyższego wzoru oceny paramerów oraz pewne usalone warości K* oraz *, jednakże dla esymacji przedziałowej lub esowania hipoez ypu (H : El Q/K x*; H : El Q/K x*) nie da się wykorzysać znanych nam doąd echnik. Wymagałoby o bowiem wnioskowania o NIEINIOWYCH funkcjach paramerów, co będziemy rozważać w dalszej kolejności. Wnioskowanie o współczynniku efeku skali: W przypadku funkcji o sałej elasyczności subsyucji (CES) możemy pokazać iż: RTS El + El ν (ylko rzeba o wyprowadzić, zob. zajęcia 9). W związku z ym Q/ K Q/ wnioskowanie o współczynniku efeku skali [esymacja przedziałowa, esowanie sałych korzyści skali j. (H : RTS ; H : RTS ) lub ogólnie (H : RTS x*; H : RTS x*)] prowadzi się sandardowo: esujemy hipoezy lub esymujemy przedziałowo paramer ν, do czego wysarczy nam znajomość jego oceny oraz oszacowana asympoyczna macierz kowariancji V βˆ. esymaora nieliniowej MNK ( ) ˆas W funkcji Cobba i Douglasa można pokazać iż: RTS ElQ / K + ElQ / + α. Wobec ego RTS ˆ ˆ α + ˆ α, zaś dla ln esymacji przedziałowej lub esowania hipoez o współczynniku efeku skali (jak np. hipoezy o wysępowaniu sałych korzyści skali porzebujemy D( RTS ˆ ). Widać jednak iż wysarczy przyjąć: RTS ψ c β, gdzie c [ ] (por. () oraz (8)) i już błąd średni szacunku dla efeku skali możemy wyliczyć jako: D( RTS ˆ ) D( ψˆ ) c' Vˆ( ˆ β ) c co pozwala dokonać esymacji przedziałowej warości współczynnika efeku skali oraz np. esować hipoezę o wysępowaniu sałych korzyści skali.

4 Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego 4/ W przypadku funkcji ranslogarymicznej (w przeciwieńswie do funkcji CES oraz funkcji Cobba i Douglasa) współczynnik efeku skali jes zależny od poziomów wszyskich nakładów: RTS El + El α * ln * ( * + ln *) Q/ K Q/ 4 (por. zajęcia oraz zadl4.hml) Możemy posąpić podobnie jak dla funkcji Cobba i Douglasa, przyjmuąc: RTS ψ c β, ylko że c będzie miał bardziej skomplikowaną posać. Na podsawie (4) i (7) możemy swierdzić, iż w naszym przypadku: c [ lnk* lnk* lnk*+ln* ] podobnie: RTS ˆ ψˆ c' ˆ β, D( RTS ˆ ) D( ψˆ ) c' Vˆ( ˆ β ) c co pozwala dokonywać esymacji przedziałowej współczynnika efeku skali lub esować hipoezę mówiącą o ym, iż przyjmuje on pewną konkreną warość x* (dla usalonych warości K* oraz *). Wnioskowanie o echnicznej sopie subsyucji: Techniczna sopa subsyucji R K w żadnym przypadku (ani dla funkcji Cobba i Douglasa, ani dla funkcji CES, ani dla funkcji o ranslogarymicznej) nie jes liniową funkcją paramerów. Ogólnie P El K Q/ K mamy RK P El K R R CiD K α α K * * Q/ CES δ K * K δ * T α * ln * * RK α 4ln * * K* co oznacza, że dla celów esymacji przedziałowej musielibyśmy wykorzysać echniki wnioskowania o nieliniowych funkcjach paramerów. Jednakże w przypadku pary hipoez ypu: (H : R K x*; H : R K x*) możemy (dla funkcji ranslogarymicznej oraz Cobba i Douglasa) dokonać akiej ransformacji esowanej równości, że może być ona przedsawiona jako liniowa funkcja paramerów. Dla funkcji Cobba i Douglasa: H : R K x*; H : R K x* α * ponieważ: x* α* αk* x* α* αk* x* α K * o równoważnie: H : ψ ; H : ψ przyjmujemy więc: ψ c β, gdzie: c [ * -x*k* ], co esujemy sandardowo wykorzysując: ψˆ c' ˆ β oraz D( ψˆ ) cv ' ˆ( ˆ β ) c. To samo równanie można przekszałcić akże w inny sposób, dzieląc jeszcze dodakowo przez * lub K*.

5 Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / Dla funkcji ranslogarymicznej posępujemy podobnie, j. mnożymy przez mianownik w aki sposób, żeby uzyskać linową funkcję paramerów: H : R K x*; H : R K x* ponieważ rozparywaną równość możemy przekszałcić: α * ln * * x * α ln * * K* 4 * ( α * ln * ) x* ( α 4ln * * ) K * * * * α αx* * α4x* ln * ln * x** K* K* K* odpowiednio do ego podsawiamy: H : ψ ; H : ψ gdzie: ψ c β oraz c [ */K* -x* (*/K*) * -x* ( ln *) (*/K*)ln*-x* (*) ], dalej posępujemy jak wyżej. Wnioskowanie o elasyczności subsyucji: Elasyczność subsyucji w funkcji Cobba i Douglasa wynosi i nie podlega wnioskowaniu saysycznemu, zaś dla funkcji ranslogarymicznej ej charakerysyki nie rozparujemy, bo wymaga o pewnych dodakowych komplikacji. Jednak w przypadku funkcji CES: CES ES jak widać, elasyczność subsyucji jes nieliniową funkcją, więc nie możemy poznanymi doąd echnikami prowadzić esymacji przedziałowej. Jednak w przypadku pary hipoez: H : ES x*; H : ES x* możemy dokonać serii przekszałceń: CES ES x* x * x * x * x* x* x * x * i sprowadzić przedsawiony problem do esowania hipoezy o współczynniku.

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Empiryczna

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne Dr hab. Jerzy Czesław Ossowski Wybrane elemeny ekonomerii sosowanej cz. II Isoność zmiennych modelu, auokorelacja i modele muliplikaywne Ekonomeria-ćw.cz-SSW dr hab. Jerzy Czesław Ossowski Kaedra Nauk

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

Mariusz Plich. Spis treści:

Mariusz Plich. Spis treści: Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Testowanie współzależności w rozwoju gospodarczym

Testowanie współzależności w rozwoju gospodarczym The Wroclaw School of Banking Research Journal ISSN 1643-7772 I eissn 2392-1153 Vol. 15 I No. 5 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu ISSN 1643-7772 I eissn 2392-1153 R. 15 I Nr 5 Tesowanie

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych 1 Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego Maria Jadamus-Hacura * Krysyna Melich-Iwanek ** Model segmenowy bezzarudnieniowego wzrosu gospodarczego Wsęp Wzros gospodarczy jes jednym z podsawowych czynników kszałujących rynek pracy. Rynek en jes

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA w LOGISTYCE. Metody statystyczne w analizie procesów produkcji

STATYSTYKA EKONOMICZNA w LOGISTYCE. Metody statystyczne w analizie procesów produkcji SAYSYKA EKONOMICZNA w LOGISYCE Meody saysyczne w analizie procesów produkcji Pomiar poziomu produkcji Produkcja jes maerialnym efekem działalności przedsiębiorswa przemysłowego. Do produkcji zalicza się

Bardziej szczegółowo

Raport: Modele Matematyczne w Finansach 2014

Raport: Modele Matematyczne w Finansach 2014 Rapor: Modele Maemayczne w Finansach 2014 Krzyszof Bisewski Pior Bochnia Kamila Domańska Pior Garbuliński Elżbiea Gawłowska Grzegorz Głowienko Barosz Głowinkowski Magdalena Hubicz Marcin Kania Paweł Marcinkowski

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

MODELOWANIE PROCESU PRODUKCJI W MAKROEKONOMETRYCZNYM MODELU W8D-2010

MODELOWANIE PROCESU PRODUKCJI W MAKROEKONOMETRYCZNYM MODELU W8D-2010 ACTA UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 294, 213 Waldemar Florczak *, Iwona Świeczewska ** Władysław Welfe *** MODELOWANIE PROCESU PRODUKCJI W MAKROEKONOMETRYCZNYM MODELU W8D-21 Sreszczenie. Arykuł

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI

ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI ZESTAW VI Przykład: Weźmy pod uwagę dwa modele ednorównaniowe: () Y = a+ b + c, () Y = + g + g Z + ξ, Gdzie,Y,Z oznaczaą zmienne, a,b,c,,g paramery srukuralne

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH

WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH WYTRZYMAŁOŚĆ KOMPOZYTÓW WARTWOWYCH Zagadnienia wyrzymałościowe w przypadku maeriałów kompozyowych, a mówiąc ściślej włóknisych kompozyów warswowych (np. laminay zbrojone włóknami) należy rozparywać na

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Modelowanie i analiza szeregów czasowych

Modelowanie i analiza szeregów czasowych Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

SOE PL 2009 Model DSGE

SOE PL 2009 Model DSGE Zeszy nr 25 SOE PL 29 Model DSGE Warszawa, 2 r. , SOE PL 29 Konak: B Bohdan.Klos@mail.nbp.pl T ( 48 22) 653 5 87 B Grzegorz.Grabek@mail.nbp.pl T ( 48 22) 585 4 8 B Grzegorz.Koloch@mail.nbp.pl T ( 48 22)

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo