Dystrybucje, wiadomości wstępne (I)

Podobne dokumenty
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Hilberta

Równanie przewodnictwa cieplnego (I)

Wykłady... b i a i. i=1. m(d k ) inf

1 Relacje i odwzorowania

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

jest ciągiem elementów z przestrzeni B(R, R)

7 Twierdzenie Fubiniego

Analiza funkcjonalna 1.

8 Całka stochastyczna względem semimartyngałów

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Całki niewłaściwe. Całki w granicach nieskończonych

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

VI. Równania różniczkowe liniowe wyższych rzędów

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Zadania do Rozdziału X

Analiza Funkcjonalna - Zadania

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Ciągłość funkcji f : R R

Zasada indukcji matematycznej

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

2. Definicja pochodnej w R n

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Analiza matematyczna 2 zadania z odpowiedziami

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

1 Zbiory i działania na zbiorach.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

Zagadnienia brzegowe dla równań eliptycznych

Wykład 2. Transformata Fouriera

Równanie przewodnictwa cieplnego (II)

Algebra abstrakcyjna

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

II. FUNKCJE WIELU ZMIENNYCH

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

Rozwiązywanie równań nieliniowych

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Twierdzenie spektralne

Analiza matematyczna. 1. Ciągi

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Elementy metod numerycznych

Równania różniczkowe cząstkowe drugiego rzędu

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

FUNKCJE ZESPOLONE Lista zadań 2005/2006

Analiza I.2*, lato 2018

22 Pochodna funkcji definicja

Teoria miary i całki

Całka podwójna po prostokącie

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

Pochodna funkcji odwrotnej

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

F t+ := s>t. F s = F t.

Przykładowe zadania z teorii liczb

1 Określenie pierścienia

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Lista zagadnień omawianych na wykładzie w dn r. :

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Metody numeryczne I Równania nieliniowe

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Liczby zespolone. x + 2 = 0.

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Pochodne funkcji wraz z zastosowaniami - teoria

Definicja odwzorowania ciągłego i niektóre przykłady

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Rachunek różniczkowy funkcji dwóch zmiennych

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

TRANSFORMATA FOURIERA

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Prawa wielkich liczb, centralne twierdzenia graniczne

Krzysztof Rykaczewski. Szeregi

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

Transkrypt:

Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów określonych na odpowiednich przestrzeniach funkcyjnych rzeczywistych lub zespolonych. Funkcjonały takie nazywamy dystrybucjami. Dystrybucje mogą być określone na różnych przestrzeniach funkcyjnych. Zmieniając odpowiednią przestrzeń funkcyjną zmieniamy klasę dystrybucji. Poniżej przedstawimy podstawowe pojęcia dotyczące dystrybucji. 8.1 Przestrzeń funkcji próbnych D, przestrzeń D Przyjmujemy następującą definicję. D (zbiór funkcji próbnych) = C (R) lub C (R n ). Oznacza to, że ϕ D ϕ C oraz supp ϕ = {x : ϕ (x) } (nośnik funkcji) jest zwarty (ϕ może być funkcją o wartościach rzeczywistych lub zespolonych). W przestrzeni funkcji próbnych definiujemy zbieżność ciągu funkcyjnego w sposób następujący. ϕ n ϕ w D k N ϕ (k) n ϕ (k) oraz nośniki supp ϕ n są wspólnie ograniczone. (to jest kontrprzykład na zbieżność - brak wspólnej ograniczoności nośników). T w i e r d z e n i e Każda funkcja ciągła f (t) o nośniku ograniczonym może być jednostajnie przybliżona przez funkcje z przestrzeni D. Dla dowodu twierdzenia należy rozważyć funkcję { dla t 1 ξ (t) = e 1 t 2 1 dla t < 1, 69

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 7 następnie zauważyć, że jest ona klasy C i utworzyć kolejną funkcję pomocniczą określoną wzorem g α (t) = ξ ( ) t α, ξ ( ) t α dt g α (t) dt = 1 dla α >. Funkcja g a jest tożsamościowo równa zeru poza przedziałem ( α, α). Niech ϕ α (t) = f (τ) g α (t τ) dτ, ϕ α D. Funkcja ϕ α jest żądanym przybliżeniem, ponieważ f (t) ϕ α (t) = [f (t) f (τ)] g α (t τ) dτ f (t) f (τ) g α (t τ) dτ. Dobierając α tak małe, by dla t τ < α na mocy jednostajnej ciągłości funkcji f zachodziła nierówność f (t) f (τ) < ε otrzymujemy tezę, gdyż f (t) ϕ α (t) ε t+α t α g α (t τ) dτ = ε Przestrzenią dystrybucji D nazywamy przestrzeń funkcjonałów liniowych i ciągłych na D (względem zbieżności określonej w poprzedniej definicji). W przestrzeni D określamy zbieżność jak następuje. Niech T n, T D (oznaczamy równoważnie T (ϕ) = T ϕ ). T n T w D ϕ D T n (ϕ) T (ϕ) T w i e r d z e n i e Przestrzeń D jest domknięta ze względu na zbieżność (tzn. granica ciągu funkcjonałów liniowych i ciągłych jest funkcjonałem liniowym i ciągłym). Spośród wszystkich dystrybucji szczególnie wyróżniamy tzw. dystrybucje regularne. Są to dystrybucje wyznaczone przez funkcje lokalnie całkowalne. Niech f będzie funkcją lokalnie całkowalną na R, a więc funkcją, dla której istnieje całka oznaczona po dowolnym przedziale skończonym z funkcji f (t).

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 71 Dystrybucją regularną wyznaczoną przez lokalnie całkowalną funkcję f nazywamy dystrybucję określoną wzorem f ϕ = f (t) ϕ (t) dt dla ϕ D. Poprawność tej definicji (ciągłość funkcjonału) wynika z oszacowania f ϕ f ϕ n f (t) ϕ (t) ϕ n (t) dt = f (t) ϕ (t) ϕ n (t) dt M K ε K gdzie K jest zbiorem zwartym, w którym zawarte są nośniki wszystkich funkcji ϕ n, ϕ. Wiele własności dystrybucji i pojęć z nimi związanych wprowadza się w ten sposób, by były one uogólnieniem własności dystrybucji regularnych. Dotyczy to przede wszystkim różniczkowania dystrybucji, pojęcia równości dystrybucji na zbiorze otwartym (mimo, że dystrybucja nie jest funkcją mającą określoną wartość w każdym punkcie) oraz pojęcia nośnika dystrybucji. Rozważmy na początek funkcję lokalnie całkowalną f, której pochodna f jest także funkcją lokalnie całkowalną. Niech ϕ D będzie taka, że supp ϕ K = [a, b] - zwarty. Wówczas ze wzoru na całkowanie przez części otrzymujemy f (t) ϕ (t) dt = b+1 a 1 f (t) ϕ (t) dt = f (t) ϕ (t) b+1 a 1 b+1 a 1 f (t) ϕ (t) dt = co pozwala przyjąć następującą definicję różniczkowania w przestrzeni D. Pochodną dystrybucji T D nazywamy dystrybucję T = DT określoną wzorem f (t) ϕ (t) dt T ϕ = T ϕ (8.1) dla ϕ D (w ten sposób każda dystrybucja, a więc i każda funkcja lokalnie całkowalna, ma pochodną). Pochodną tą nazywamy pochodną w sensie dystrybucyjnym. W przypadku wielowymiarowym powyższą definicję modyfikujemy do wzoru D α T ϕ = ( 1) α T D a ϕ (8.2) gdzie α jest wielowskaźnikiem α = (α 1, α 2,..., α n ), α = α 1 + α 2 +... + α n, zaś D α ϕ = α x α ϕ. (8.3) 1 1... x αn n

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 72 Dystrybucje T 1, T 2 D są równe na zbiorze otwartym A R wtedy i tylko wtedy gdy spełniony jest warunek ϕ D supp ϕ A T 1 ϕ = T 2 ϕ. Nośnikiem dystrybucji T D nazywamy najmniejszy zbiór domknięty F R taki, że T = na F w sensie poprzedniej definicji. Spośród wszystkich dystrybucji wyrózniamy tzw. dystrybucje skończonego rzędu będące pochodnymi dystrybucyjnymi funkcji ciągłych. Dystrybucję T D nazywamy dystrybucją skończonego rzędu wtedy i tylko wtedy gdy istnieje funkcja h (t) ciągła na R oraz liczba naturalna k taka, że T = D k h. Najmniejszą liczbę k o tej własności nazywamy rzędem dystrybucji T. T w i e r d z e n i e Każda dystrybucja T D jest lokalnie dystrybucją skończonego rzędu tzn., że dla ustalonego ograniczonego lecz dowolnego przedziału (a, b) R istnieje h C (a, b), k taka, że ϕ D supp ϕ (a, b) zachodzi T ϕ = ( 1) k b h (t) ϕ (k) (t) dt = ( 1) k h (t) ϕ (k) (t) dt = D k h ϕ (8.4) a R (dla dystrybucji skończonego rzędu równość powyższa zachodzi dla wszystkich ϕ D - bez żadnych dodatkowych ograniczeń co do nośnika ϕ). T w i e r d z e n i e Niech f będzie lokalnie całkowalna na R. Niech h (t) = t f (τ) dτ. Wówczas f = Dh (w sensie dystrybucyjnym). α W teorii całki Lebesgue a dowodzi się, że h (t) jest różniczkowalna prawie wszędzie (tzn. ewentualnie poza zbiorem miary zero) i prawie wszędzie h (t) = f (t). W takim razie mamy na mocy wzoru na całkowanie przez części Dh ϕ = h ϕ = = f ϕ a więc Dh = f. h (t) ϕ (t) dt = h (t) ϕ (t) + f (t) ϕ (t) dt = Ponieważ h jest ciągła, więc f jest skończonego rzędu ( - gdy f ciągła, 1 - w przeciwnym razie).

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 73 8.1.1 Przykłady dystrybucji skończonego rzędu P r z y k ł a d { 1 dla t < Niech h (t) = t dla t. Wówczas Dh = 1 +, gdzie 1 + jest funkcją skoku jednostkowego { dla t < (funkcją Heavyside a) określoną jako 1 + (t) = 1 dla t. Obliczając z definicji pochodną Dh otrzymujemy Dh ϕ = h ϕ = = tϕ (t) dt = tϕ (t) + 1 + (t) ϕ (t) dt = 1 + ϕ a więc Dh = 1 + ϕ (t) dt = P r z y k ł a d 2 Niech δ = D1 + = D 2 h. Obliczmy wartość δ ϕ. δ ϕ = D1 + ϕ = 1 + ϕ = ϕ (t) dt = ϕ ( ) + ϕ () = ϕ () Dystrybucja δ zwana jest tzw. deltą Diraca. Nie jest ona dystrybucją regularną, ponieważ nie istnieje funkcja lokalnie całkowalna f taka, że ϕ D zachodzi f (t) ϕ (t) dt = ϕ (), jest ona jednakże dystrybucją skończonego rzędu, jej rząd równy jest 2. P r z y k ł a d 3 Dystrybucje δ (n) = D n δ = D n+2 h (pochodne delty Diraca) są także dystrybucjami skończonego (n + 2 - go) rzędu. Korzystając z definicji obliczamy natychmiast, że δ (n) ϕ = ( 1) n δ ϕ (n) = ( 1) n ϕ (n) () 8.2 Transformata Laplace a dystrybucji Ze zbioru wszystkich dystrybucji skończonego rzędu wybieramy te, które są pochodnymi dystrybucyjnymi funkcji ciągłych h (t) spełniających dwa dodatkowe warunki: 1. h (t) = dla t <, 2. L {h (t)} istnieje i jest zbieżna bezwzględnie dla Re s > σ. Zbiór takich dystrybucji oznaczamy przez D o. Dla dystrybucji T = D k h D definiujemy przekształcenie Laplace a wzorem L {T } (s) = s k L {h (t)} (s) = s k H (s),

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 74 gdzie H (s) = L {h (t)} (s).jest klasyczną transformatą Laplace a funkcji h (t). T w i e r d z e n i e Jeśli funkcja f (t) posiada L transformatę w sensie klasycznym, to posiada również transformatę w sensie dystrybucyjnym i transformaty te są równe. Niech h (t) = t f (τ) dτ oraz niech L {f} (s) = F (s) w sensie klasycznym. Wówczas h spełnia warunki 1 i 2 oraz Dh = f. Ponadto, zgodnie z tw. o transformacie całki w sensie klasycznym L {h} (s) = 1L {f} (s) = 1 F (s). Zatem z poprzedniej definicji wynika, że wyznaczając tę transformatę w sensie dystrybucyjnym s s dostajemy co kończy dowód. L {f} (s) = L {Dh} = sh (s) = s 1 F (s) = F (s) s 8.2.1 Przykłady transformaty Laplace a dystrybucji P r z y k ł a d 1 T = δ. Ponieważ δ = D 2 h (t), gdzie h (t) = { dla t < t dla t L {δ} (s) = s 2 L {h (t)} (s) = s 2 1 s 2 = 1 spełnia 1 i 2, więc (funkcja stała nie należy do przestrzeni obrazów klasycznej transformaty Laplace a). P r z y k ł a d 2 T = δ (n). Ponieważ δ (n) = D n+2 h (t), więc L { δ (n)} (s) = s n+2 1 s 2 = sn (wielomian). P r z y k ł a d 3 T = δ (t a), gdzie δ (t a), ϕ := ϕ (a). Ponieważ δ (t a) = D 2 h (t a), więc na mocy własności klasycznej transformaty (tw. o przesunięciu) otrzymujemy L {δ (t a)} (s) = s 2 e as 1 s 2 = e as 8.2.2 Najważniejsze własności L-transformaty dystrybucji Załóżmy, że T D tzn. T = D k h (t), h (t) spełnia warunki 1 i 2 oraz L {T } (s) = s k L {h} (s) = s k H (s) = F (s)

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 75 Niech b R. Wówczas operator przesunięcia τ b określony na funkcjach próbnych równością τ b ϕ (t) = ϕ (t b) definiujemy w przestrzeni dystrybucji jako τ b T ϕ = T ϕ (t + b) Uzasadnieniem tej definicji jest następująca równość dla funkcji lokalnie całkowalnych f (t b) ϕ (t) dt = f (t) ϕ (t + b) dt. Przykładowo, τ b δ ϕ = δ ϕ (t + b) = ϕ (b) - por. przykład 3. T w i e r d z e n i e (o przesunięciu) Dla każdego b > prawdziwy jest wzór L {τ b T } (s) = e bs F (s). Dla dowodu zauważmy, że τ b T ϕ (t) = D k h (t) ϕ (t + b) = ( 1) k h (t) ϕ (k) (t + b) = = ( 1) k h (t) ϕ (k) (t + b) dt = = ( 1) k h (t b) ϕ (k) (t) dt = D k h (t b) ϕ co oznacza, że τ b T = D k h (t b). Zatem L {τ b T } (s) = L { D k h (t b) } (s) = s k e bs H (s) = e bs F (s). Analogicznie do operatora przesunięcia wprowadzamy w przestrzeni dystrybucji operację mnożenia dystrybucji przez funkcję klasy C. Ponieważ dla f - lokalnie całkowalnych, ϕ D, ψ C zachodzi oczywisty wzór (f (t) ψ (t)) ϕ (t) dt = f (t) (ψ (t) ϕ (t)) dt, więc w naturalny sposób wprowadzamy następującą definicję mnożenia dystrybucji T D przez funkcję ψ C.

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 76 (mnożenia dystrybucji przez funkcje klasy C ) T ψ ϕ := T ψϕ. T w i e r d z e n i e (przesunięcie w dziedzinie zespolonej ) Jeżeli T D o, α C, to zachodzi wzór L { e αt T } (s) = F (s + α) Dla dowodu skorzystamy ze wzoru Leibniza na pochodną iloczynu funkcji. Niech T = D k h. Wówczas otrzymujemy e αt T ϕ = T e αt ϕ = D k h e αt ϕ ( ) k = ( 1) k h ( α) i e αt D k i ϕ = i i= ( ) k = ( 1) k ( α) i h e αt ϕ (k i) = i i= W takim razie e αt T = co kończy dowód. i= he αt ϕ (k i) ( ) k = ( 1) k ( α) i ( 1) k i D ( k i h (t) e αt) ϕ = i i= ( ) k = α i D ( k i h (t) e αt) ϕ. i i= L { e αt T } (s) = ( k i ) α i D k i (h (t) e αt ), a więc i= ( ) k α i s k i H (s + α) = H (s + α) (s + α) k = F (s + α) i T w i e r d z e n i e (o transformacie pochodnej ) Jeśli T D, n N, to prawdziwy jest wzór L {D n T } (s) = s n F (s). Niech T = D k h (t), zatem D n T = D n+k h (t). Stąd co kończy dowód. L {D n T } (s) = L { D n+k h } (s) = s n+k H (s) = s n F (s).

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 77 U w a g a Powyższy wzór różni się pozornie od sformułowania klasycznego. W sformułowamiu klasycznym prawdziwy jest wzór L { f (n) (t) } (s) = s n F (s) f ( +) s n 1 f ( +) s n 2... f (n 1) ( +). (8.5) Występująca między obydwoma przypadkami różnica jest jednak tylko pozorna. Jeżeli oznaczymy przez [f] dystrybucję generowaną przez funkcję f (równą dla t < ), to łatwo pokazać przez indukcję względem n, że pochodna w sensie dystrybucyjnym D n [f] może być wyznaczona jako Najpierw obliczamy dla n = 1 jak następuje Df ϕ = f ϕ = D n [f] = [ f (n)] + f (n 1) ( +) δ +... + f ( +) δ (n 1). (8.6) = f (t) ϕ (t) t= t= + f (t) ϕ (t) dt = f (t) ϕ (t) dt f (t) ϕ (t) dt = f ( +) δ ϕ + f ϕ, ϕ() f (t) ϕ (t) dt = tzn. D [f] = [f ] + f ( + ) δ. Stąd dalej łatwo przez indukcję uzyskać wzór (8.6) dla dowolnego n. Stosując do wzoru (8.6) twierdzenie o transformacie pochodnej (w sensie dystrybucyjnym) otrzymujemy s n L {f} (s) = L { f (n)} (s) + f (n 1) ( +) +... + f ( +) s n 1, który jest równoważny wzorowi klasycznemu (8.5). T w i e r d z e n i e (o różniczkowaniu transformaty) Dla dowolnego n N prawdziwy jest wzór L {( t) n T } (s) = F (n) (s). Widać, że wystarczy przeprowadzić dowód w przypadku n = 1 (dalej natychmiast przez indukcję). Niech F (s) = s k H (s). Stąd F (s) = ks k 1 H (s) + s k H (s). Ponieważ na mocy własności klasycznej transformaty Laplace a L {( t) h (t)} = H (s), więc L { kd k 1 h (t) + D k [( t) h (t)] } (s) = F (s). Stosując wzór Leibniza do wyrażenia D k [( t) h (t)] mamy ( ) ( ) k k D k [( t) h (t)] = td k h (t) 1 D k 1 h (t) = td k h (t) kd k 1 h (t) 1 zatem F (s) = L { kd k 1 h (t) td k h (t) kd k 1 h (t) } (s) = L { ( t) D k h (t) } = L {( t) T } co kończy dowód.

TEMAT 8. DYSTRYBUCJE, WIADOMOŚCI WSTĘPNE (I) 78 8.3 Zadania 1. Niech T będzie funkcjonałem określonym następująco T ϕ := 1 ϕ (t) ϕ () dt + t Pokazać, że: a) T D, b) T = D [1 + (t) ln t]. 2. Niech T będzie funkcjonałem określonym następująco T ϕ := 1 2 [ ] Pokazać, że a) T D, b) T = D 1 + (t) t 1 2. 1 ϕ (t) dt dla ϕ D. t ϕ (t) ϕ () t dt dla ϕ D. t 3. Obliczyć pochodne dystrybucyjne do rzędu trzeciego włącznie funkcji f (t) = sin t. 4. Obliczyć pochodne dystrybucyjne do rzędu trzeciego włącznie funkcji f (t) = t sin t. 5. Obliczyć pochodne dystrybucyjne do rzędu trzeciego włącznie funkcji f (t) = t sin t. 1 6. Wiedząc, że L {J (t)} (s) = s 2 +1 F (s) = s 2 + α 2. wyznaczyć odwrotną transformatę Laplace a funkcji 7. Pokazać, że w przestrzeni dystrybucji D prawdziwa jest równość t k δ (k) = ( 1) k k!δ. 8. Pokazać, że w przestrzeni dystrybucji D prawdziwa jest równość (sin at) δ (1) = aδ. 9. Rozwiązać w przestrzeni dystrybucji równanie różniczkowe D 3 y + 3D 2 y + 3Dy + y = δ (4) (t 1). 1. Rozwiązać w przestrzeni dystrybucji równanie różniczkowe tdy + 2y =. 11. Rozwiązać w przestrzeni dystrybucji równanie różniczkowe t 2 D 2 y + 4tDy + 2y = δ. 12. Przedyskutować szeregowy układ RLC w przypadku impulsu wejściowego U (t) = U 1 + (t).