Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013"

Transkrypt

1 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013

2 1 PODSTAWY 2 3

3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej (pozornie): podzbiór A X jest zwarty, jeśli dla każdego ciągu {x n } A istnieje podciąg {x nk } taki, że lim x nk = x 0 A. Przykłady. 1. Odcinek ([0, 1], ) jest przestrzenią zwartą. 2. Odcinek (0, 1) nie jest przestrzenią zwartą. 3. (X, d dys ), gdy X jest nieskończony, nie jest przestrzenią zwartą. Gdy X jest skończony, to jest to przestrzeń zwarta.

4 Twierdzenie. Domknięty podzbiór przestrzeni metrycznej zwartej jest zbiorem zwartym. Dowód. Niech A X -domknięty w X i X zwarta. Weźmy ciąg {x n } w A. Ze zwartości X istnieje podciąg {x nk } taki, że lim x nk = x X. Ale wyrazy ciągu są w A, a zatem i granica x A. Twierdzenie. Jeżeli (X, d) jest zwarta, to jest zupełna. Dowód. Weźmy ciąg {x n } X spełniający warunek Cauchy ego. Ze zwartości X możemy wybrać podciąg x nk x 0 X. Udowodnimy, że x n x 0.

5 Weźmy ε > 0 n0 n,m n0 d(x n, x m ) < ε 2 n1 k n1 d(x nk, x 0 ) < ε 2 Wybierzmy n 2 max(n 0, n 1 ). Wtedy dla k, n n 2 mamy n k n i d(x n, x 0 ) d(x n, x nk ) + d(x nk, x 0 ) < ε + ε < ε 2 2

6 Wniosek. Jeśli (X, d) - przestrzeń metryczna i A X pozbiór zwarty, to A jest domknięty w X Twierdzenie. Przestrzeń zwarta jest ograniczona. Dowód. Przypuśćmy, że X nie jest ograniczona. Wybierzmy a 1 X. Wtedy istnieje a 2 X taki, że d(a 1, a 2 ) 1. a3 d(a 1, a 3 ) 1, i d(a 2, a 3 ) 1. itd... Dostajemy ciąg nieskończony {a n } taki, że d(a i, a j ) 1 gdy i j. Z tego ciągu nie da się wybrać podciągu zbieżnego, bo żaden podciąg nie spełnia warunku Cauchy ego.

7 Definicja. Zbiór A (X, d) nazywamy ε-siecią, jeśli x X p A d(x, p) < ε. Lemat. Jeśli (X, d) jest zwarta, to dla każdego ε > 0 istnieje w X skończona ε-sieć. Dowód. Ustalmy ε > 0. Niech p 1 X. Punkt p 2 wybieramy tak, by d(p 1, p 2 ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1 }. Punkt p 3 wybieramy tak, by d(p 1, p 3 ) ε, d(p 2, p 3 ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1, p 2 }.

8 itd: Punkt p n wybieramy tak, by m<n d(p n, p m ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1, p 2,..., p n 1 }. Jeśli ten algorytm można kontynuować w nieskończoność, to otrzymamy ciąg {p n }, z którego nie da się wybrać podciągu zbieżnego. Zatem X nie mogłaby być zwarta. Stąd N A = {p 1, p 2,..., p N } jest ε-siecią.

9 Twierdzenie. Przestrzeń zwarta jest ośrodkowa. Dowód. Stosujemy lemat dla ε = 1 n A 1/n. Niech B := A 1 A 1/2... A 1/n... otrzymując zbiór Każdy ze zbiorów A 1/n jest skończony, zatem B jest przeliczalny. Weźmy x X. n bn b n A 1/n B d(x, b n ) < 1 n. Wtedy lim b n = x (z tw. o trzech ciągach), czyli x B. Zatem X = B, czyli B jest ośrodkiem.

10 Twierdzenie. Jeżeli f : X Y ciągła, i A X zwarty, to f (A) Y jest zwarty. Dowód. Rozważmy ciąg {y n } f (A). n xn A f (x n ) = y n. Ale A jest zwarty, stąd istnieje podciąg zbieżny x nk x 0. Zatem z ciągłości f mamy lim f (x nk ) = f (x 0 ). Ale f (x nk ) = y nk, czyli y n ma podciąg zbieżny w f (A). Wniosek 1. Jeśli h : X Y jest homeomorfizmem, to X jest zwarta wtedy i tylko wtedy, gdy Y jest zwarta.

11 Wniosek 2 (Tw. uogólnione Weierstrassa). Jeżeli (X, d) jest zwarta i f : X R ciągła, to f jest ograniczona i przyjmuje wartość najmniejszą i najmniejszą. Dowód. f (X ) R jest zwarty, a zatem domknięty i ograniczony. Zatem istnieją a = inf x f (x), b = sup x f (x) oraz f (X ) [a, b] Z definicji kresu ε>0 x a f (x) < a + ε. Stosując to dla ε = 1/n dostajemy ciąg x n taki, że f (x n ) a. Ale z x n można wybrać podciąg zbieżny (zwartość!) x nk x 0. Z definicji Heine go ciągłości f (x nk ) f (x 0 ), więc f (x 0 ) = a. Analogicznie dla kresu górnego.

12 Twierdzenie (uogólnione Heine go). Jeśli f : X Y ciągła i X jest zwarta, to f jest jednostajnie ciągła. Dowód. Przypuśćmy, że f nie jest jednostajnie ciągła : ε>0 δ>0 x,x d(x, x ) < δ i d(f (x), f (x )) ε. Przy ustalonym ε > 0 bierzemy δ = 1/n : n d(x n, x n) < 1 n i d(f (x n ), f (x n)) ε. Z ciągu x n można wybrać podciąg zbieżny x nk x. Wtedy również x n k x. Stąd lim f (x nk ) = f (x) = lim f (x n k ), Ale d(f (x nk ), f (x n k )) ε > 0. Sprzeczność.

13 Twierdzenie Heine go - Borela. Podzbiór A (R k, d e ) jest zwarty wtedy i tylko wtedy, gdy jest domknięty i ograniczony. Dowód. Implikacja jest prawdziwa w dowolnej przestrzeni metrycznej. Niech X n = (x 1 n, x 2 n,..., x k n ) A Ponieważ A jest ograniczony, to każdy z ciągów współrzędnych jest ograniczony. Zatem możemy wybrać taki podciąg X nk, aby pierwsze współrzędne x 1 n k x 1. Z tego podciągu wybieramy podciąg taki, aby także ciąg drugich wspórzędnych był zbieżny

14 x 2 n kl x 2, x 1 n k x 1 itd... po k takich krokach otrzymujemy nieskończony podciąg X ns, który jest zbieżny po współrzędnych do punktu (x 1, x 2,..., x k ). Jest to zbieżność w metryce euklidesowej. Z domkniętości A wynika, że (x 1, x 2,..., x k ) A. Przykład. Zbiór Cantora C. To zbiór liczb dających się zapisać w postaci gdzie t n {0, 2}. t = t t t n 3 n +...

15 np. liczba 1 3 C: 1 = = (0, ) 3 Ale np. 1 2 / C. Geometryczna konstrukcja: C 0 = [0, 1], C 1 = [0, 1] \ (1/3, 2/3), itd... Każdy z odcinków w C n dzielimy na trzy równe odcinki i usuwamy wszystkie środkowe części (otwarte), otrzymując nowy zbiór domknięty C n+1 C n. C := C n. n=0 ( ) C jest zwarty, bo jest domknięty i ograniczony w R.

16 Definicja. Rodzinę zbiorów {U t } t T nazywamy pokryciem X, gdy U t = X. t T Jeżeli wszystkie zbiory U t są otwarte w X, to mówimy o pokryciu otwartym. Jeśli wyróżnimy podzbiór indeksów S T, to rodzinę {U t } t S nazywamy podpokryciem {U t } t T, gdy U t = X. t S Twierdzenie Lindelöfa. Jeśli (X, d) jest przestrzenią metryczną ośrodkową, to z każdego jej pokrycia otwartego można wybrać podpokrycie przeliczalne.

17 Dowód. Niech A = {a j } będzie ośrodkiem w X. Wtedy rodzina kul {K(a j, 1 ); j N, n N} jest przeliczalnym n pokryciem X. Niech {U t } t T będzie pokryciem otwartym. Wtedy x t x U t Również istnieje n N takie, że K(x, 1 n ) U t. Niech a j A taki, że d(x, a j ) < 1 4n. Wtedy x K(a j, 1 4n ) K(x, 1 n ) U t 1 Pokrycie {K(a j, 4n j )} j N jest przeliczalne. Dla każdego j 1 wybieramy jedno t j takie, że K(a j, 4n j ) U tj.

18 Stąd X = 1 K(a j, ) 4n j j=1 U tj, j=1 czyli {U tj } j=1 jest szukanym podpokryciem. Definicja. Rodzina zbiorów {A s } s S jest scentrowana, jeśli k N s1,s 2,...,s k A s1 A s2 A sk. Twierdzenie. Równoważne są warunki: 1 Z każdego pokrycia otwartego przestrzeni X można wybrać podpokrycie skończone. 2 Dla każdej scentrowanej rodziny {F s } s S zbiorów domkniętych s S F s.

19 Dowód. 1 2 Niech {F s } s S -rodzina zbiorów domkniętych taka, że F s =. s S Wtedy X = X \ F s = (X \ F s ) = U s, s S s S s S gdzie zbiory U s = X \ F s są otwarte. Zatem z 1 k X = U s1 U s2 U sk = X \ F si. i=1 Zatem nasza rodzina nie jest scentrowana.

20 Dowód. 2 1 Weźmy pokrycie otwarte: X = U s S s. Przypuśćmy, że nie da się wybrać podpokrycia skończonego. Określamy zbiory domknięte F s = X \ U s. Dla dowolnego skończonego zbioru indeksów X \ k U si = i=1 k (X \ U si ) = i=1 k F si. i=1 Zatem rodzina {F s } s S F s S s. Stąd jest scentrowana. Z 2 mamy X X \ s S F s = s S (X \ F s ) = s S U s. Czyli {U s } s S nie jest pokryciem.

21 Twierdzenie. Przestrzeń metryczna (X, d) jest zwarta wtedy i tylko wtedy, gdy z każdego pokrycia otwartego X można wybrać podpokrycie skończone. Dowód. Załóżmy, że X nie jest zwarta, czyli istnieje ciąg {x n }, z którego nie da się wybrać podciągu zbieżnego. Niech F k := {x k, x k+1, x k+2,...}. Wtedy F k są domknięte. Rodzina {F k } k N jest zstępująca, a zatem scentrowana: l F ki = F kl. Ale i=1 F k =. k=1 Z poprzedniego twierdzenia zbiory U k = X \ F k tworzą pokrycie otwarte, z którego nie da się wybrać podpokrycia skończonego.

22 Dowód. Niech {U s } s S - pokrycie otwarte. Na mocy Tw. Lindelöfa możemy wybrać podpokrycie przeliczalne: X = i=1 U s i. Przypuśćmy, że n X \ n i=1 U s i. Wybieram ciąg: x n F n = X \ n i=1 U s i. Z założenia istnieje podciąg x nk x 0. Zauważmy, że dla każdego ustalonego n 0 N mamy nk n 0 x nk F n0. Zatem x 0 F n0 n0. Czyli x 0 F i = (X \ U si ) = X \ i=1 i=1 Sprzeczność kończy dowód. i=1 U si =

23 Twierdzenie Lebesgue a o pokryciu. Jeśli (X, d) jest zwarta, {U t } t T -pokrycie otwarte, to istnieje takie ε > 0, że dla każdego x X istnieje t T K (x, ε) U t. Dowód. Dla każdego x wybierzmy ε x > 0 takie, że K(x, 2ε x ) U t dla pewnego t T. Z pokrycia {K(x, ε x )} x X wybieramy podpokrycie skończone K ε1,..., K εk. Niech ε := min{ε x1, ε x2,..., ε xk }. Weźmy y K(x, ε). Wtedy xj d(x, x j ) < ε xj. d(y, x j ) d(y, x) + d(x, x j ) < ε + ε xj 2ε xj. Zatem y K(x j, ε xj ) U t dla pewnego t T.

24 Liczbę ε z poprzedniego twierdzenia nazywa się liczbą Lebesgue a pokrycia U. Twierdzenie (Hausdorff). Jeśli f : X Y ciągła, X zwarta, to f jednostajnie ciągła. Dowód (nowy). Niech ε > 0. Rozważmy otwarte pokrycie X : A := {f 1 (K(y, ε )} y Y. 2 Określamy δ > 0 jako liczbę Lebesgue a tego pokrycia. Niech d(x, x ) < δ. Stąd y Y x K(x, δ) f 1 (K(y, ε 2 ). f (x), f (x ) K(y, ε 2 ) d(f (x), f (x )) < ε.

25 Twierdzenie. Jeśli (X, d) zwarta i f : X Y spełnia lokalnie warunek Lipschitza, to spełnia warunek Lipschitza globalnie. Dowód. x X Ux x Lx y,z Ux d Y (f (y), f (z)) L x d(y, z) Rodzina {U x } x X jest otwartym pokryciem X. Wybieramy skończone podpokrycie {U x1, U x2,..., U xk }. Niech M i,j = d Y (f (x i ), f (x j )) d(x i, x j ) Wtedy jest stałą Lipschitza dla f. L = 3 max{l xi, M ij } i,j

26 Jeśli mamy ciąg przestrzeni metrycznych (X i, d i ), i = 1, 2, 3,..., to w produkcie kartezjańskim X = X 1 X 2 X 3... metrykę zadaje wzór d((x 1, x 2,...), (y 1, y 2,...)) := i=1 1 2 i d i (x i, y i ) 1 + d i (x i, y i ). Twierdzenie. Jeśli wszystkie X i są zwarte, to ich produkt kartezjański X z powyższą metryką jest przestrzenią zwartą. Uwaga Dowód podaliśmy dla skończonego ciągu przestrzeni. Przykład Kostka Hilberta: X = [0, 1] [0, 1] [0, 1]... z powyższą metryką jest zwarta.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Wstęp do topologii Ćwiczenia

Wstęp do topologii Ćwiczenia Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Notatki do wykładu Analiza 4

Notatki do wykładu Analiza 4 Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Notatki do wykładu Analiza 4 Rozdział I: Funkcje na przestrzeniach metrycznych Wrocław 2004 O skrypcie Skrypt ten, traktowany łącznie

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu

Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Krzysztof Frączek Analiza Matematyczna II Wykład dla studentów II roku kierunku informatyka Toruń 2009 Spis treści 1 Przestrzenie

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista. Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

1 Elementy analizy funkcjonalnej

1 Elementy analizy funkcjonalnej M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale MIM Uniwersytetu

Bardziej szczegółowo

Zbieżność jednostajna

Zbieżność jednostajna Rozdział 7 Zbieżność jednostajna Kilkakrotnie mieliśmy już do czynienia z granicami ciągów, zależnych od dodatkowego parametru, który mógł być liczbą rzeczywistą lub zespoloną. Przyjęliśmy np. definicję

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne 1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność

Bardziej szczegółowo

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

1 Przestrzenie Hilberta

1 Przestrzenie Hilberta M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013 Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale

Bardziej szczegółowo

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski 1 Spis treści 1 Zbiory liczbowe 5 1.1 Krótka informacja o zbiorach liczb naturalnych, całkowitych i wymiernych 5 1.1.1 Liczby naturalne.........................

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Analiza funkcjonalna Wykłady

Analiza funkcjonalna Wykłady Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Analiza funkcjonalna

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów

Bardziej szczegółowo

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g

Bardziej szczegółowo

2.7 Przestrzenie unormowane skończenie wymiarowe

2.7 Przestrzenie unormowane skończenie wymiarowe 2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

O zastosowaniach twierdzeń o punktach stałych

O zastosowaniach twierdzeń o punktach stałych O zastosowaniach twierdzeń o punktach stałych Marcin Borkowski Streszczenie Wszyscy znamy twierdzenie Banacha o kontrakcji czy twierdzenie Brouwera o punkcie stałym. Stosunkowo rzadko jednak mamy okazję

Bardziej szczegółowo

Zastosowania twierdzeń o punktach stałych

Zastosowania twierdzeń o punktach stałych 16 kwietnia 2016 Abstrakt Niech X będzie przestrzenią topologiczną. Ustalmy odwzorowanie ciągłe f : X X. Twierdzeniem o punkcie stałym nazywamy prawdę matematyczną postulującą pod pewnymi warunkami istnienie

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Konstrukcja przestrzeni metrycznej sztywnej i κ-superuniwersalnej

Konstrukcja przestrzeni metrycznej sztywnej i κ-superuniwersalnej Konstrukcja przestrzeni metrycznej sztywnej i κ-superuniwersalnej Wojciech Bielas 24 września 2014 r. Przestrzeń Urysohna W 1927 roku opublikowana została praca w której P. Urysohn skonstruował zupełną

Bardziej szczegółowo

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu

Bardziej szczegółowo

Teoria miary. Matematyka, rok II. Wykład 1

Teoria miary. Matematyka, rok II. Wykład 1 Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Analiza funkcjonalna I. Ryszard Szwarc

Analiza funkcjonalna I. Ryszard Szwarc Analiza funkcjonalna I Ryszard Szwarc Wrocław 2010 2 Spis treści 1 Przestrzenie unormowane 3 1.1 Dodatek.............................. 13 2 Operatory liniowe 15 3 Przestrzenie Hilberta 26 3.1 Podstawowe

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Zagadnienia stacjonarne

Zagadnienia stacjonarne Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,

Bardziej szczegółowo

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II Zalecane podręczniki W. Krysicki, L. Włodarski naliza matematyczna w zadaniach, część I i II c Ł. Pawelec G. M. Fichtenholz Rachunek różniczkowy i całkowy, tom I i II S. Dorosiewicz, J. Kłopotowski, D.

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II Zalecane podręczniki W. Krysicki, L. Włodarski naliza matematyczna w zadaniach, część I i II c Ł. Pawelec G. M. Fichtenholz Rachunek różniczkowy i całkowy, tom I i II S. Dorosiewicz, J. Kłopotowski, D.

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017 Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,

Bardziej szczegółowo

Elementy Teorii Miary i Całki

Elementy Teorii Miary i Całki Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/

Bardziej szczegółowo

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel Ciągi komplementarne Autor: Krzysztof Zamarski Opiekun pracy: dr Jacek Dymel Spis treści 1 Wprowadzenie 2 2 Pojęcia podstawowe 3 2.1 Oznaczenia........................... 3 2.2 "Ciąg odwrotny"........................

Bardziej szczegółowo