Analiza funkcjonalna 1.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza funkcjonalna 1."

Transkrypt

1 Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0

2 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. ( wbanasz/am3/) [2] Birkholc A., Analiza matematyczna. Funkcje wielu zmiennych. Wydawnictwo Naukowe PWN, Warszawa [3] Filipczak F. M., Teoria miary i całki (skrypt). [4] Kołodziej W., Analiza matematyczna. PWN, Warszawa [5] Kołodziej W., Wybrane rozdziały analizy matematycznej. PWN, Warszawa [6] Musielak J., Wstęp do analizy funkcjonalnej. PWN, Warszawa [7] Prus S., Stachura A., Analiza funkcjonalna w zadaniach.. PWN, Warszawa [8] Rusinek J., Zadania z analizy funkcjonalnej z rozwiązaniami. Wyd. Uniwersytetu Kardynała Stefana Wyszyńskiego,

3 1 Przypomnienie wiadomości o przestrzeniach liniowych W dalszej części zakładać będziemy, że X jest dowolnym niepustym zbiorem (nazwiemy go przestrzenią), a K niech będzie niepustym zbiorem liczb rzeczywistych lub zespolonych. 1.1 Przestrzenie liniowe Definicja 1.1. Załóżmy, że są określone dwa działania: dodawanie +:X X X i mnożenie przez liczbę : K X X, spełniające następujące warunki (przy dowolnych x, y, z X, α, β K): 1. x + y = y + x (przemienność dodawania), 2. x +(y + z) =(x + y)+z (łączność dodawania), 3. istnieje takie element zerowy θ X, żedlakażdegox X, x + θ = x, 4. jeżeli θ spełnia poprzedni warunek, to dlakażdego x X istnieje element przeciwny x X taki, że x +( x) =θ, 5. α(x + y) =αx + αy (rozdzielność mnożenia względem dodawania elementów), 6. (α + β)x = αx + βx (rozdzielność mnożeniz względem dodawania liczb), 7. α(βx)=(αβ)x (łączność mnożenia), 8. 1 x = x. Wtedy zbiór X z działaniami + i nazywamy przestrzenia liniową (wektorową) rzeczywistą lub zespoloną (w zależności od tego, czy K jest zbiorem liczb rzeczywistych, czy zespolonych) i oznaczamy symbolem X, +,. Przykład 1. Przykłady przestrzeni liniowych (wektorowych): X = K n - zbiór wektorów (punktów) n-wymiarowych, tzn. elementów x =(t 1,t 2,t 3,...,t n ), gdzie t 1,t 2,...,t n K, z działaniami: x + y := (t 1 + s 1,t 2 + s 2,...,t n + s n ), αx := (αt 1,αt 2,...,αt n ) dla x =(t 1,t 2,t 3,...,t n ), y =(s 1,s 2,...,s n ) K n, α K. Elementem zerowym jest θ := (0, 0,...,0), a elementem przeciwnym do x jest x := ( t 1, t 2,..., t n ). X = K -zbiórciągówx =(t k ), gdziet k K, z działaniami: x + y := (t k + s k ), αx := (αt k) dla x =(t k ), y =(s k), α K. Elementem zerowym jest θ := (0) k+1, a elementem przeciwnym do x jest x := ( t k ). 4

4 X = K Ω - zbiór funkcji określonych w dowolnym zbiorze niepustym Ω o wartościach z K, tzn:f :Ω K, przy czym, jeśli f,g K Ω, α K, to określamy działania: (f + g)(t) :=f(t)+g(t), (αf)(t) :=αf(t) dla t Ω. Elementem zerowym jest funkcja tożsamościowo równa zero, a elementem przeciwnym do f jest f. X = M(m n, K) -zbiórmacierzyom wierszach i n kolumnach o wyrazach rzeczywistych lub zespolonych, z naturalnymi działaniami na macierzach, tzn. dla α K oraz dla x =[α ij ] i=1..m,j=1..n i y =[β ij ] i=1..m,j=1..n,gdzie α α 1n β β 1n [α ij ] i=1..m,j=1..n := i [β ij] i=1..m,j=1..n := α m1... α mn β m1... β mn określamy α 11 + β α 1n + β 1n x + y := [α ij ] i=1..m,j=1..n +[β ij ] i=1..m,j=1..n = α m1 + β m1... α mn + β mn αα αα 1n oraz αx := α[α ij ] i=1..m,j=1..m = αα m1... αα mn Elementem zerowym θ jest macierz, której elementami sa same zera, a elementem przeciwnym do x jest x := [ α ij ] i=1..m,j=1..n. Definicja 1.2. Jeśli X, +, jest przestrzenią liniową (wektorową), to niepusty podzbiór X 0 X nazywamy jej podprzestrzenią liniową, gdy X 0, +, jest przestrzenią liniową. Z definicji tej wynika natychmiast twierdzenie: Twierdzenie 1.1. Niech X, +, będzie przestrzenią linową (wektorową). Niepusty podzbiór X 0 X jest jej podprzestrzenią liniową wtedy i tylko wtedy, gdy dla x, y X 0 i α K mamy x + y X 0 i αx X 0. Uwaga 1. Warunek: dla x, y X 0 i α K mamy x + y X 0 i αx X 0 można zastąpić następującym: dla x, y X 0 i α, β K mamy αx + βy X 0. Przykład 2. Przykłady podprzestrzeni liniowych (wektorowych) ciągowych: 5

5 X = K, X 0 = c 00 - przestrzeń ciągów skończonych, tzn. x c 00,jeślix =(t k ), gdziet k K, przy czym tylko skończona ilość t k jest niezerowa. X = K, X 0 = m - przestrzeń ciągów ograniczonych, tzn. x m, jeślix =(t k ),gdziet k K, przy czym sup.. t k <. X = K, X 0 = c - przestrzeń ciągów zbieżnych, tzn. x c, jeślix =(t k ),gdziet k K, przy czym lim k t k = t 0 dla pewnego t 0 K. X = K, X 0 = c 0 - przestrzeń ciągów zbieżnych do zera, tzn. x c 0,jeślix =(t k ),gdziet k K, przy czym lim k t k =0. X = K, X 0 = l - przestrzeń ciągów sumowalnych, tzn. x l, jeślix =(t k ),gdziet k K, przy czym t k <. Łatwo zauważyć następującą zależność: c 00 l c 0 c m K. Przykład 3. Przykłady podprzestrzeni liniowych (wektorowych) funkcyjnych: X = K Ω, gdzie Ω = [a, b] R, X 0 = B([a, b], K) - przestrzeń funkcji ograniczonych, tzn. x B([a, b], K), jeśli sup t [a,b] x(t) <. X = K Ω, gdzie Ω = [a, b] R, X 0 = C([a, b], K) - przestrzeń funkcji ciągłych na [a, b]. Łatwo zauważyć następującą zależność: C([a, b], K) B([a, b], K) K [a,b]. Definicja 1.3. Elementy x 1,x 2,...,x n przestrzeni wektorowej X, +, nazywamy liniowo zależnymi, jeśli istnieją takie liczby α 1,α 2,...,α n K nie wszystkie równe zero, że zachodzi równość α 1 x 1 + α 2 x 2 + α n x n = θ. (1) Jeśli przeciwnie, z (1) wynika, że α 1 = α 2 =... = α n =0,toelementyx 1,x 2,...x n nazywamy liniowo niezależnymi. Definicja 1.4. Największą liczbę całkowitą nieujemną n o tej własności, że istnieje n elementów liniowo niezależnych w X, +, nazywamy wymiarem przestrzeni X, +, i oznaczamy symbolem dimx. Jeśli taka liczba n istnieje, to przestrzeń nazywamy skończenie wymiarową, a jeśli nie istnieje, to przestrzeń 6

6 nazywamy nieskończenie wymiarową i piszemy dimx =. Jeśli dimx = n, to każdy zbiór n liniowo niezależnych elementów przestrzeni X nazywamy bazą przestrzeni liniowej X, +,. Twierdzenie 1.2. Jeśli niepusty zbiór B X jest bazą przestrzeni X, +,, to każdy wektor przestrzeni daje się w sposób jednoznaczny przedstawić w postaci kombinacji liniowej elementów zbioru B. Definicja 1.5. Jeśli bazę w przestrzeni skończenie wymiarowej tworzą elementy e 1,e 2,...,e n, to na podstawie poprzedniego twierdzenia każdy wektor x X można zapisać jako: x = t 1 e 1 + t 2 e t n e n. Układ (e 1,e 2,...,e n ) nazywamy bazą algebraiczną tej przestrzeni, a liczby t 1,t 2,...,t n nazywamy współrzędnymi elementu x względem tej bazy. Przykład 4. Dla każdego k =1,...,n niech e k K n oznacza wektor jednostkowy, tzn. e 1 =(1, 0, 0,...,0, 0), e 2 =(0, 1, 0,...,0, 0),...,e n =(0, 0, 0,...0, 1). Wektory te są oczywiście liniowo niezależne i tworzą bazę algebraiczną przestrzeni K n. Bazę tę nazywamy bazą kanoniczną. Wtedy każdy wektor x =(t 1,t 2,...,t n ) K n można zapisać jako n x = t 1 e 1 + t 2 e t n e n = t k e k w sposób jednoznaczny, przy czym liczby t 1,t 2,...,t n są współrzędnymi elementu x względem bazy kanonicznej. Przykład 5. Rozważmy przestrzeń liniową X, +, z X = K, którą tworzą ciągi nieskończone x =(t k ) liczb rzeczywistych bądź zespolonych. Taka przestrzeń liniowa jest nieskończenie wymiarowa, bo elementy e 1 =(1, 0, 0,...), e 2 =(0, 1, 0,...),...,e 3 =(0, 0, 1,...).,... są liniowo niezależne, tzn. układ e 1,e 2,...,e m jest liniowo niezależny dla każdego naturalnego m. Wtedy każdy wektor (ciąg) x =(t k ) K można zapisać jako x = t 1 e 1 + t 2 e 2 + = t k e k w sposób jednoznaczny. 7

7 Definicja 1.6. Niech X 1,X 2 będą podprzestrzeniami liniowymi przestrzeni liniowej X, +,. Jeżeli każdy element x X daje się jednoznacznie pzredstawić w postaci x = x 1 + x 2, gdzie x 1 X 1,x 2 X 2, (2) to mówimy, że X jest sumą prostą podprzestrzeni X 1 i X 2 i zapisujemy X = X 1 X 2. Twierdzenie 1.3. Jeżeli X = X 1 X 2, to podprzestrzenie X 1 i X 2 mają wspólny jedynie element zerowy. Na odwrót, jeśli każdy element x ma rozkład (2) i podprzestrzenie X 1 i X 2 nie mają elementów wspólnych, prócz zerowego, to X = X 1 X 2. Dowód. Dla dowodu pierwszej części przypuśćmy, że istnieje element x 0 θ należący do obu podprzestrzeni X 1 i X 2. Wtedy x o przedstawieniu (2) dałby się również zapisać w postaci x =(x 1 x 0 )+(x 0 + x 2 ) i x 1 x 0 X 1, x 0 + x 2 X 2, x 1 x 0 x 1, x 0 + x 2 x 2, co jest wbrew założonej jednoznaczności takiego przedstawienia. Dla dowodu drugiej części wystarczy sprawdzić jednoznaczność przedstawienia (2). Niech więc x = x 1 + x 2 = x 1 + x 2, gdzie x 1,x 1 X 1, x 2,x 2 X 2. Wtedy x 1 x 1 = x 2 x 2,alex 1 x 1 X 1 i x 2 x 2 X 2, więc x 1 x 1 = x 2 x 2 = θ (bo jedynym wspólnym elementem jest zero). Stąd x 1 = x 1 i x 2 = x 2. W dalszej części wykładu dla uproszczenia zapisu będziemy często pisać, że X jest przestrzenią liniową, zamiast X, +,. 1.2 Operatory liniowe Definicja 1.7. Niech X, Y będą przestrzeniami wektorowymi (liniowymi) nad ciałem K liczb rzeczywistych lub zespolonych. Odwzorowanie T : X Y nazywamy operatorem liniowym (odwzorowaniem liniowym), jeśli T (x 1 + x 2 )=T(x 1 )+T(x 2 ), T (αx) =αt (x) dla dowolnych x 1,x 2 X i α K. Jeżeli Y = K, to operator liniowy T : X K nazywamy funkcjonałem liniowym lub formą liniową. 8

8 Przy operatorach liniowych będziemy często pisali T x zamiast T (x). Uwaga 2. Warunki addytywności i jednorodności w definicji operatora liniowego można zastąpić jednym: dla dowolnych x 1,x 2 X i α, β K. T (αx 1 + βx 2 )=αt (x 1 )+βt(x 2 ) Podstawowe operatory analizy matematycznej, jak operator obliczania granicy ciągu, sumowania szeregu, różniczkowania i całkowania funkcji, to przykłady operatorów liniowych lub funkcjonałów liniowych. Przykład 6. Przykłady operatorów liniowych. Niech X = c będzie przestrzenią ciągów zbieżnych o wyrazach z ciała K, Y = K. Niech dalej T : c K będzie określone następująco: T (x) = lim k t k dla x =(t k ) c. Operator T jest funkcjonałem liniowym, co wynika z własności granicy ciągu. Niech X = l będzie przestrzenią ciągów sumowalnych o wyrazach z ciała K, Y = K. Niech dalej T : l K będzie określone następująco: T (x) = t k dla x =(t k ) l. Operator T jest funkcjonałem liniowym, co wynika z własności sum nieskończonych. Istotnie: T (x 1 + x 2 )= (t k + t k) = t k + t k = Tx 1 + tx 2 oraz T (αx) = αt k = α t k = αt x, dla x =(t k ), x 1 =(t k), x 2 =(t k), α K. Niech X będzie przestrzenią funkcji x :[a, b] R K różniczkowalnych w [a, b], a Y = K [a,b].wtedy Tx = x,gdziex jest pochodną funkcji x jest operatorem liniowym z X w Y (na podstawie własności różniczkowania). Niech X będzie przestrzenią funkcji x :[a, b] R R całkowalnych na [a, b], a Y = R. WtedyTx = [a,b] x(t) dt jest operatorem liniowym z X w Y na podstawie własności całki. 9

9 Twierdzenie 1.4. Każdy operator liniowy T : K n K m,gdziek jest ciałem liczb rzeczywistych lub zespolonych, jest postaci Tx = y, gdzie y 1 = a 11 x 1 + a 12 x a 1n x n, y 2 = a 21 x 1 + a 22 x a 2n x n, , y m = a m1 x 1 + a m2 x a mn x n, (3) przy czym x =(x 1,x 2,...,x n ), y =(y 1,y 2,...,y m ), a ik K. Na odwrót, każdy operator T : K n K m postaci (3) jest liniowy. Dowód. Niech e 1 =(1, 0,...,0), e 2 =(0, 1, 0,...,0),..., e n = (0, 0,...,1) będzie bazą w K n oraz niech e 1 = (1, 0,...,0), e 2 =(0, 1, 0,...,0),..., e m =(0, 0,...,1) będzie bazą w Km. Ponieważ Te k K m dla k = 1, 2,...,n, więc istnieją takie a ik K, żete k = m i=1 a ik e i (bo daje się przedstawić jako kombinacja liniowa elementów bazy K m. Weźmy x =(x 1,x 2,...,x n ) i przypuśćmy, że Tx = y =(y 1,y 2,...,y m ). Wtedy ( m n ) y i e i = y = Tx = T n n m m ( x k e k = x k Te k = x k a ik e i = n ) a ik x k e i. i=1 i=1 i=1 Stąd y i = n a ik x k dla i =1, 2,...,m, czyli zachodzi (3). Na odwrót, gdy Tx = y, gdziex i y są związane równościami (3), to jest widoczne, że T jest operatorem liniowym. Wniosek 1.1. Każdy funkcjonał liniowy T nad przestrzenią K n,gdziek jest ciałem liczb rzeczywistych lub zespolonych, jest postaci Tx = a 1 x 1 + a 2 x a n x n, gdzie x =(x 1,x 2,...,x n ), a k K dla k =1, 2,...,n. Na odwrót, każdy funkcjonał wymienionej postaci jest liniowy. Twierdzenie 1.5. Jeżeli T : X Y,gdzieX, Y są przestrzeniami liniowymi, to Tθ X = θ Y przestrzeni Y jest podprzestrzenią liniową przestrzeni Y. oraz obraz TX przestrzeni X w Dowód. Mamy Tθ X = T (θ x + θ X )=Tθ X + Tθ X =2Tθ X, więc Tθ X = θ Y. Niech teraz y, y 1,y 2 TX,aα K. Wtedy istnieją takie x, x 1,x 2 X, żey = Tx, y 1 = Tx 1, y 2 = Tx 2. Zatem y 1 + y 2 = Tx 1 + Tx 2 = T (x 1 + x 2 ) TX i αy = αt x = T (αx) TX,codowodzi,żeTX jest podprzestrzenią liniową przestrzeni Y. 10

10 Twierdzenie 1.6. Jeżeli T : X Y,gdzieX, Y są przestrzeniami liniowymi, to T jest różnowartościowy wtedy i tylko wtedy, gdy Tx = θ implikuje x = θ (są to oczywiście elementy zerowe odpowiednich przestrzeni). Dowód. Przypomnijmy, że z definicji różnowartościowości mamy dla dowolnych x 1,x 2 X Tx 1 = Tx 2 implikuje x 1 = x 2, czyli Tx 1 Tx 2 = θ implikuje x 1 x 2 = θ, T (x 1 x 2 )=θ implikuje x 1 x 2 = θ. Jest to równoważne warunkowi twierdzenia. Przypomnijmy teraz, że jądrem odwzorowania liniowego T : X Y nazywamy przeciwobraz zera i oznaczamy symbolem kert, czyli kert = {x X : Tx = θ}. W świetle ostatniego twierdzenia można teraz powiedzieć, że operator T jest różnowartościowy, gdy jego jądro zawiera tylko wektor zerowy. Jeśli więc operator T ma jądro z elementem zerowym tylko i jest ponadto odwzorwaniem surjektywnym, to jest odwracalny. Można wykazać, że jeśli T jest liniowy, to operator odwrotny do niego T 1 też jest liniowy. W zbiorze wszystkich operatorów liniowych T : X Y można wprowadzić działania algebraiczne. Sumę T + S dwóch oepratorów T i S określamy równością (T + S)x := Tx+ Sx, a iloczyn αt operatora T przez liczbę α - równością: (αt )x := αt x. W wyniku tych działań otrzymujemy również operatory liniowe. Ponadto nietrudno sprawdzić, że spełnione są wszystkie aksjomaty przestrzeni liniowej, czyli rozważany zbiór jest przestrzenią wektorową, w której elementem zerowym jest operator tożsamościowo równy zero. Przestrzeń liniową operatorów liniowych T : X Y oznaczamy symbolem L(X, Y ). 11

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

2.7 Przestrzenie unormowane skończenie wymiarowe

2.7 Przestrzenie unormowane skończenie wymiarowe 2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

3 Przestrzenie liniowe

3 Przestrzenie liniowe MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

DB Algebra liniowa 1 semestr letni 2018

DB Algebra liniowa 1 semestr letni 2018 DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

1 Przestrzenie Hilberta

1 Przestrzenie Hilberta M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Przestrzeń liniowa. Algebra. Aleksander Denisiuk

Przestrzeń liniowa. Algebra. Aleksander Denisiuk Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej

1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej 1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo