Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
|
|
- Edward Krupa
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej można znaleźć pokrycie przeliczalne V {V 1, V 2, } takie, że dla każdego i istnieje U U spełniające V i U Dowód Niech U będzie zbiorem otwartym Dla każdego x U istnieje punkt q x z ośrodka i liczba wymierna r x taka, że x K(q x, r x ) U Istotnie, jeśli d(x, U c ) δ, to wystarczy wybrać q x tak, by d(x, q x ) < δ/2, a następnie r x < δ/2 Mamy więc U x U K(q x, r x ) Ale kul o środku w punkcie z ośrodka i promieniu wymiernym jest przeliczalnie wiele one utworzą szukane pokrycie V Wystarczy więc pokazać, że z każdego pokrycia przeliczalnego można wybrać pokrycie skończone (mając dowolne pokrycie zastąpimy je przez przeliczalne {V 1, V 2, }, z niego wybierzemy skończone {V k1,, V kn }, a następnie jako ostateczne pokrycie weźmiemy {U k1,, U kn } U takie, że V ki U ki ) Załóżmy, że przeliczalne pokrycie {V 1, V 2, } nie zawiera pokrycia skończonego Wybieramy ciąg (x n ) tak, że x 1 V 1, x 2 V 1 V 2,, x n V n itd Ten ciąg nie zawierałby podciągu zbieżnego, bo dla każdego x istniałby indeks N taki, że x V N i byłoby to otoczenie zawierające tylko skończenie elementów ciągu (x n ) Więc x nie mógłby być punktem skupienia ciągu To przeczy zwartości X Warunek Borela: Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone można zapisać w równoważnej formie Rodzina zbiorów F jest scentrowana, gdy każda skończona rodzina F 1,, F n wybrana z F ma niepusty przekrój Stwierdzenie 1 X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój Dowód Jeśli F jest scentrowaną rodzina zbiorów domkniętych, to U {F c : F F } jest rodziną zbiorów otwartych, której żaden skończony podzbiór nie jest pokryciem X Zatem U nie może być pokryciem, tzn U X, czyli F φ Analogicznie w odwrotną stronę Okazuje się, że: Twierdzenie 2 W przestrzeniach metrycznych NWSR: 1 X jest (ciągowo) zwarta 2 z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone każda scentrowana rodzina zbiorów domkniętych w X ma niepusty przekrój Dowód Pozostaje tylko pokazać, że ostatni warunek implikuje (ciągową) zwartość Istotnie, jeśli (x n ) jest dowolnym ciągiem w X, to F n {x n, x n+1, } tworzą scentrowaną rodzinę zbiorów domkniętych Jej przekrój jest niepusty, ale łatwo pokazać, że każdy element z przekroju jest punktem skupienia ciągu (x n ) 1
2 Własności funkcji ciągłych na przestrzeni zwartej Twierdzenie Funkcja ciągła f : X R na przestrzeni zwartej jest ograniczona i osiąga swoje kresy Dowód Gdyby nie była ograniczona, to wybralibyśmy ciąg (x n ) taki, że f(x n ) > n Ten ciąg zawierałby podciąg (x nk ) zbieżny, do x, ale mielibyśmy f(x) lim k f(x nk ) Twierdzenie 4 Funkcja ciągła f : X Y na przestrzeni zwartej jest jednostajnie ciągła Wskazówka do dowodu Wykorzystać warunek Borela Twierdzenie 5 Jeśli X jest zwarta, a f : X Y ciągła, to f(x) jest zbiorem zwartym w Y Ogólniej, obraz dowolnego zbioru zwartego w (dowolnej) przestrzeni metrycznej X jest zwarty Wniosek 1 Zwartość jest niezmiennikiem homeomorfizmu Twierdzenie 6 Jeżeli X jest zwarta, a f : X Y ciągła i odwracalna, to f jest homeomorfizmem Ważne przestrzenie zwarte (zatem i zupełne) 1 Kostka Hilberta Definicja 1 Kostka Hilberta H to produkt przeliczalnie wielu odcinków [0, 1] z metryką określoną wzorem d ( (x n ), (y n ) ) 1 2 n x n y n n1 Stwierdzenie 2 Niech x (x n ) n N, x (k) (x k n) n N będą elementami H Ciąg (x (k) ) k N jest zbieżny do x wtedy i tylko wtedy, gdy dla każdego n N zachodzi lim k x (k) n x n Stwierdzenie Kostka Hilberta H jest homeomorficzna z produktem kartezjańskim n1 [0, 1 n ], w którym metrykę określono wzorem ρ ( (x n ), (y n ) ) (x n y n ) 2 Dowód Odpowiedni homeomorfizm produktu n1 [0, 1 n ] na H zapewnia przekształcenie (x 1, x 2, x, ) (x 1, 2x 2, x, ) Stwierdzenie 4 Własności kostki Hilberta: 1 H jest ośrodkowa ośrodkiem jest zbiór n1 {(y n ) Q N : n 0 n > n 0 y n 0} 2 H jest zupełna (wynika z jenego z zadań z ćwiczeń) H jest zwarta (produkt, tu przeliczalny, przestrzeni zwartych jest zwarty, a odcinki [0, 1] są zwarte) 2
3 Twierdzenie 7 (Urysohn) Każda metryczna przestrzeń ośrodkowa jest homeomorficzna z pewnym podzbiorem kostki Hilberta Mówiąc mniej formalnie, kostka Hilberta zawiera wszystkie możliwe ośrodkowe przestrzenie metryczne Idea dowodu: Niech X będzie ośrodkową przestrzenią metryczną Zastępujemy obowiązującą w X metrykę d przez metrykę d równoważną z d, ograniczoną przez 1 Przypisujemy każdemu x X ciąg odległości x od kolejnych elementów z ośrodka, tzn tworzymy przekształcenie x ( d(x, q 1 ), d(x, q 2 ), ) H, gdzie {q 1, q 2, } jest ośrodkiem w X To jest szukany homeomorfizm 2 Zbiór Cantora a Definicja Niech F 0 [0, 1] Dzielimy F 0 na trzy równe części i wyrzucamy środkową (bez brzegów) otrzymując F 1 [0, 1 ] [ 2, 1] Następnie każdy z dwóch pozostawionych odcinków domkniętych dzielimy na trzy równe części i wyrzucamy środkową część otrzymując F 2 [0, 1 9 ] [ 2 9, 1 ] [ 2, 7 9 ] [ 8 9, 1] Postępujemy indukcyjnie według reguły F n F n 1 \ ( k + 1 n, k + 2 ) n k N Zbiór F n jest sumą 2 n odcinków domknietych długości 1 n W szczególności jest więc domknięty Definiujemy zbiór Cantora jako zstępujący przekrój C F n n1 Zbiór Cantora C dziedziczy metrykę z odcinka [0, 1], tzn d(x, y) x y, możemy więc mówić o przestrzeni metrycznej (C, d) b Reprezentacja w postaci ciągów {0, 1} Rozważmy zbiór C { n1 } c n n : c n 0 c n 2 [0, 1] (Jest to zbiór tych wszystkich liczb z odcinka [0, 1], których rozwinięcie trójkowe nie wymaga użycia cyfry 1) Łatwo zauważyć, że jeżeli c 1 0, to liczba c n n1 n należy do odcinka [0, 1 ], a jeżeli c 1 2, to c n n1 n należy do [ 2, 1] Ogólniej, jeśli c N 0, to c n n1 n należy do [ N 1 n1 cn, N 1 n n1 cn + 1 ], a jeśli c n N n 2, to do [ N 1 n1 cn + 2, N 1 n N n1 cn + 1 ] n N 1 Albo prościej, jeśli liczba c n k n1 n należy do przedziału [, k+1 ] i ma na N-tym N 1 N 1 miejscu 0, to wiemy, że jeśli podzielimy ten przedział na trzy równe części, to liczba ta będzie należeć do pierwszej (lewej) części tego przedziału, a jeśli c N 2, to do części ostatniej Stąd C C Z drugiej strony, każdy element x zbioru C pozwala skonstruować ciąg (c n ) złożony z zer i dwójek tak, by x c n n1 n Mamy więc
4 C C, czyli otrzymujemy jeszcze inną charakteryzację zbioru Cantora Przy tym, jeśli oznaczymy { } c n I a1 a 2 a n n : i 1,, n c i a i (c i {0, 1, 2}) n1 to I a1 a 2 a n jest pewnym przedziałem [ k n, k+1 n ] i F n (c 1,,c n) {0,2} n I c1 c n Dla poprawy estetyki zwykle zastępuje się dwójkę przez jedynkę i otrzymuje reprezentację zbioru Cantora jako zbiór ciągów {0, 1} N Metrykę wprowadza się standardowo ρ ( (x n ), (y n ) ) n1 x n y n 2 n Wtedy przekształcenie π : {0, 1} N C dane wzorem jest homeomorfizmem c Własności zbioru Cantora π ( (x n ) ) n1 2x n n Stwierdzenie 5 Zbiór Cantora jest nieprzeliczalny Dowód Wiemy, że {0, 1} N jest nieprzeliczalny, a jest równoliczny ze zbiorem Cantora Stwierdzenie 6 (C, d) jest przestrzenią zupełną Dowód C jest zbiorem domkniętym w R (przekrój domkniętych), a (R, d) jest zupełna Stwierdzenie 7 Zbiór Cantora jest zbiorem brzegowym w [0, 1] (i w R) Dowód Wynika z konstrukcji odcinek o długości δ nie moąze zawierać się w F n dla dostatecznie dużych n Stwierdzenie 8 Zbiór Cantora jest przestrzenią ośrodkową Dowód Można skorzystać z reprezentacji zbioru Cantora jako {0, 1} N Ośrodkiem jest zbiór tych ciągów (x n ), których elementy przyjmują wartość 1 skończenie wiele razy Stwierdzenie 9 Zbiór Cantora nie ma punktów izolowanych (tzn każdy punkt zbioru Cantora jest jego punktem skupienia) 4
5 d Ciekawe twierdzenia podkreślające ważność zbioru Cantora Twierdzenie 8 Odcinek [0, 1] jest ciągłym obrazem zbioru Cantora Idea dowodu: Potraktujmy C jako {0, 1} N Odpowiednią ciągłą surjekcją jest funkcja: ϕ(x 1, x 2, ) x x x 8 + zwana schodami Cantora Ta funkcja zamienia ciągi zero-jedynkowe na rozwinięcia dwójkowe liczb z odcinka Nie jest różnowartościowa, bo np ciąg 1000 i kodują tę sama liczbę Ale można pokazać, że jest ciągła i na Lemat 2 (a) Produkt kartezjański zbioru Cantora ze sobą C C jest homeomorficzny ze zbiorem Cantora (b) Produkt kartezjański przeliczalnie wielu kopii zbioru Cantora C C C jest homeomorficzny ze zbiorem Cantora Idea dowodu: Utożsamiamy C z {0, 1} N (a) Definiujemy homeomorfizm π : C C C wzorem π ( (x 1, x 2, x, ) ) ( (x 1, x, x 5, ), (x 2, x 4, x 6, ) ) Dość łatwo zrozumieć, że π jest różnowartościowe i na Aby dowodzić ciągłości (zarówno π, jak i π 1 ) trzeba wybrać metrykę w C C, np d 1 ((a 1, a 2 ), (b 1, b 2 )) d(a 1, b 1 ) + d(a 2, b 2 ), gdzie d jest metryką w C (b) Obrazem (x 1, x 2, x, ) jest ciąg (y 1, y 2, y, ), gdzie y n jest n-tym wierszem poniższej macierzy nieskończonej y 1 (x 1, x 2, x 4, ) y 2 (x, x 5, ) y (x 6, ) Twierdzenie 9 Kostka Hilberta jest ciągłym obrazem zbioru Cantora Idea dowodu: Niech ϕ oznacza ciągłe przekształcenie {0, 1} N na [0, 1] (jak w Tw 8), a pi oznacza homeomorfizm C na C C C (jak w Tw 2) Wtedy definiujemy ciągłą surjekcję ψ : {0, 1} N H kładąc dla x {0, 1} N : (x 1, x 2, x, ) π(x) ψ(x) (ϕ(x 1 ), ϕ(x 2 ), ϕ(x ), ) 5
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Bardziej szczegółowoKorzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Bardziej szczegółowoTEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych
Bardziej szczegółowoA-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii
Bardziej szczegółowon=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
Bardziej szczegółowoRozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Bardziej szczegółowo2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Bardziej szczegółowoT O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.
T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla
Bardziej szczegółowoRozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Bardziej szczegółowojest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Bardziej szczegółowoRodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Bardziej szczegółowo(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Bardziej szczegółowoRobert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Bardziej szczegółowoKombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Bardziej szczegółowoWstęp do topologii Ćwiczenia
Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe
Bardziej szczegółowoInformacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Bardziej szczegółowoTeoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Bardziej szczegółowozbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
Bardziej szczegółowo7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
Bardziej szczegółowoKrzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Bardziej szczegółowoStanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale MIM Uniwersytetu
Bardziej szczegółowo1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Bardziej szczegółowoTopologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).
Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów
Bardziej szczegółowoTopologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Bardziej szczegółowoTemperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Bardziej szczegółowo1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Bardziej szczegółowoF t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Bardziej szczegółowoPrzestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii
Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)
Bardziej szczegółowo1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Bardziej szczegółowoWstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii
Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą
Bardziej szczegółowoNotatki do wykładu Analiza 4
Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Notatki do wykładu Analiza 4 Rozdział I: Funkcje na przestrzeniach metrycznych Wrocław 2004 O skrypcie Skrypt ten, traktowany łącznie
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowoNotatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
Bardziej szczegółowoWykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Bardziej szczegółowoG. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoTeoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoMetoda kategorii Baire a w przestrzeniach metrycznych zupełnych
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia
Bardziej szczegółowoDekompozycje prostej rzeczywistej
Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii
Bardziej szczegółowoStanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale
Bardziej szczegółowo7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowo1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
Bardziej szczegółowo1 Ciągłe operatory liniowe
1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego
Bardziej szczegółowoAnaliza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Bardziej szczegółowoOśrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Bardziej szczegółowoZadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Bardziej szczegółowo1 Przestrzenie metryczne
1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność
Bardziej szczegółowoEgzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Bardziej szczegółowoUwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Bardziej szczegółowoA i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Bardziej szczegółowoMNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Bardziej szczegółowoZadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.
Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu
Bardziej szczegółowoWykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Bardziej szczegółowoTeoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Bardziej szczegółowoCiągłość funkcji i podstawowe własności funkcji ciągłych.
Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)
Bardziej szczegółowoROZDZIA l 13. Zbiór Cantora
ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go
Bardziej szczegółowoAnaliza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Bardziej szczegółowoRównoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Bardziej szczegółowoTopologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Bardziej szczegółowoDystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Bardziej szczegółowoEGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
Bardziej szczegółowoElementy Teorii Miary i Całki
Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowoDlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Bardziej szczegółowo1 Przestrzenie Hilberta
M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoFunkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Bardziej szczegółowo1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Bardziej szczegółowoUniwersytet Mikołaja Kopernika w Toruniu
Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Krzysztof Frączek Analiza Matematyczna II Wykład dla studentów II roku kierunku informatyka Toruń 2009 Spis treści 1 Przestrzenie
Bardziej szczegółowoZad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Bardziej szczegółowoDystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Bardziej szczegółowoNotatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Bardziej szczegółowoDefinicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Bardziej szczegółowoUzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Bardziej szczegółowo1 Elementy analizy funkcjonalnej
M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Topologia Topology Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia Liczba godzin/tydzień:
Bardziej szczegółowoZastosowania twierdzeń o punktach stałych
16 kwietnia 2016 Abstrakt Niech X będzie przestrzenią topologiczną. Ustalmy odwzorowanie ciągłe f : X X. Twierdzeniem o punkcie stałym nazywamy prawdę matematyczną postulującą pod pewnymi warunkami istnienie
Bardziej szczegółowo26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,
Bardziej szczegółowo8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Bardziej szczegółowoZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA.
ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. PIOTR ZAKRZEWSKI 1. Wykłady 1/2 Definicja 1.1. Przestrzeń polska to przestrzeń topologiczna ośrodkowa, metryzowalna w sposób zupełny. Przykład 1.2.
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoZadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003
Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w
Bardziej szczegółowo3 Abstrakcyjne kompleksy symplicjalne.
3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
Bardziej szczegółowoLogika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Bardziej szczegółowoIMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Bardziej szczegółowoZadanie 1. Algorytmika ćwiczenia
Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowoO zastosowaniach twierdzeń o punktach stałych
O zastosowaniach twierdzeń o punktach stałych Marcin Borkowski Streszczenie Wszyscy znamy twierdzenie Banacha o kontrakcji czy twierdzenie Brouwera o punkcie stałym. Stosunkowo rzadko jednak mamy okazję
Bardziej szczegółowoLiczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.
Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych
Bardziej szczegółowo