Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Podobne dokumenty
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 2: Szeregi Fouriera

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Temat: Ciągi i szeregi funkcyjne

Analiza Matematyczna MAEW101

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

SZEREGI LICZBOWE I FUNKCYJNE

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Funkcje analityczne. Wykład 12

CAŁKI NIEOZNACZONE C R}.

a 1, a 2, a 3,..., a n,...

Informacja o przestrzeniach Hilberta

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

Analiza Matematyczna Ćwiczenia

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Analiza matematyczna 2 zadania z odpowiedziami

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Analiza I.2*, lato 2018

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

III. Funkcje rzeczywiste

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Metoda rozdzielania zmiennych

Ciągłość funkcji f : R R

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

1. Definicja granicy właściwej i niewłaściwej funkcji.

1 Wyrażenia potęgowe i logarytmiczne.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

Lista 1 - Funkcje elementarne

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych

Rachunek różniczkowy i całkowy 2016/17

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Pochodna funkcji jednej zmiennej

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

Pochodne funkcji wraz z zastosowaniami - teoria

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1 Relacje i odwzorowania

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Rachunek różniczkowy funkcji f : R R

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

Analiza Matematyczna I

7. Funkcje elementarne i ich własności.

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

ANALIZA MATEMATYCZNA

Zbiory liczbowe i funkcje wykład 1

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Wykład 2. Transformata Fouriera

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

jest ciągiem elementów z przestrzeni B(R, R)

1 Funkcja wykładnicza i logarytm

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

PRZEWODNIK PO PRZEDMIOCIE

Analiza matematyczna. 1. Ciągi

Funkcje wielu zmiennych

Ciągi. Granica ciągu i granica funkcji.

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

Indukcja matematyczna

Funkcje elementarne. Matematyka 1

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa

Elementy metod numerycznych

ANALIZA MATEMATYCZNA I

Funkcje dwóch i trzech zmiennych

22 Pochodna funkcji definicja

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Lista zadań nr 2 z Matematyki II

Transkrypt:

Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36

Szereg potęgowy Szeregiem potęgowym o środku w punkcie x 0 R nazywamy szereg postaci: c n (x x 0 ) n, gdzie x R oraz c n R dla n = 0, 1, 2,... Uwaga. Przyjmujemy, że 0 0 def = 1. Liczby c n nazywamy współczynnikami szeregu potęgowego. Szeregi funkcyjne str. 2/36

Promień zbieżności szeregu potęgowego Twierdzenie. Dla każdego szeregu c n (x x 0 ) n dokładnie jedna liczba R 0, + ) o własności: jeżeli x x 0 < R, to szereg bezwzględnie, jeżeli x x 0 > R, to szereg istnieje c n (x x 0 ) n jest zbieżny c n (x x 0 ) n jest rozbieżny. Liczbę R, której istnienie gwarantuje powyższe twierdzenie nazywamy promieniem zbieżności szeregu c n (x x 0 ) n. Szeregi funkcyjne str. 3/36

Promień zbieżności szeregu potęgowego Promień zbieżności szeregu potęgowego można wyznaczyć za pomocą wzoru: R = lim cn 1 n n lub R = lim n c n c, n+1 o ile granice w tych wzorach istnieją. n Gdy n lim cn =, to R = 0. n Gdy n lim cn = 0, to R =. Szeregi funkcyjne str. 4/36

Przykłady Szereg ( ) 5 n (x + 5) n jest szeregiem 3 potęgowym o środku w punkcie x 0 = 5 i promieniu R = 3 5. Szereg (6 3x) n jest szeregiem potęgowym 3 n + 2 n o środku w punkcie x 0 = 2 i promieniu R = 1. Szereg ( x) n jest szeregiem potęgowym o n! środku w punkcie x 0 = 0 i promieniu R =. Szeregi funkcyjne str. 5/36

Twierdzenie Cauchy ego-hadamarda Niech 0 < R < będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy szereg ten jest: zbieżny bezwzględnie w każdym punkcie przedziału (x 0 R, x 0 + R), rozbieżny w każdym punkcie zbioru (, x 0 R) (x 0 + R, + ). Uwaga. W punktach x 0 R, x 0 + R szereg potęgowy może być zbieżny lub rozbieżny. Gdy R = 0, to szereg potęgowy jest zbieżny jedynie w punkcie x 0. Gdy R =, to szereg potęgowy jest zbieżny bezwzględnie na całej prostej. Szeregi funkcyjne str. 6/36

Przedział zbieżności szeregu potęgowego Zbiór tych x R, dla których szereg potęgowy c n (x x 0 ) n jest zbieżny nazywamy przedziałem zbieżności tego szeregu. Szeregi funkcyjne str. 7/36

Przedział zbieżności szeregu potęgowego Uwaga. Z twierdzenia Cauchy ego-hadamarda wynika, że przedział zbieżności szeregu potęgowego może mieć jedną z postaci: (x 0 R, x 0 + R) x 0 R, x 0 + R) x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R (x 0 R, x 0 + R x 0 R, x 0 + R x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R {x 0 } (, + ) R = 0 x 0 R = x 0 Szeregi funkcyjne str. 8/36

Przykłady Dla szeregu n=1 1 n (x 2)n mamy przedział zbieżności 1, 3). R = 1 i Dla szeregu n=2 ( 1) n przedział zbieżności 1, 1. Dla szeregu ( 1) n x2n n=2 x n n ln 2 n mamy R = 1 i (2n)! mamy R = i przedział zbieżności (, + ) = R. Szeregi funkcyjne str. 9/36

Szereg Taylora i Maclaurina Niech funkcja f ma w punkcie x 0 pochodne dowolnego rzędu. Szereg potęgowy f (n) (x 0 ) n! (x x 0 ) n =f(x 0 )+ f (x 0 ) 1! (x x 0 )+ f (x 0 ) (x x 0 ) 2 +... 2! nazywamy szeregiem Taylora funkcji f o środku w punkcie x 0. Jeżeli x 0 = 0, to szereg f (n) (0) n! szeregiem Maclaurina funkcji f. x n nazywamy Szeregi funkcyjne str. 10/36

Uwaga Ze zbieżności szeregu Maclaurina funkcji nie wynika, że jego suma jest równa funkcji f. Na przykład dla funkcji f(x) = e 1 x 2, x 0 0, x = 0 mamy f (n) (0) = 0, dla n = 0, 1, 2, 3,..., i f(x) f (n) (0) x n 0. n! Szeregi funkcyjne str. 11/36

Twierdzenie o rozwijaniu funkcji w szereg Taylora Jeżeli funkcja f ma na otoczeniu O punktu x 0 pochodne dowolnego rzędu, dla każdego x O spełniony jest warunek lim n R n (x) = 0, gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 oznacza n-tą resztę we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, to f(x) = f (n) (x 0 ) n! (x x 0 ) n, dla każdego x O. Szeregi funkcyjne str. 12/36

Twierdzenie o jednoznaczności rozwinięcia funkcji w szereg potęgowy Jeżeli f(x) = c n (x x 0 ) n, dla każdego x z pewnego otoczenia punktu x 0, to c n = f (n) (x 0 ) n!, dla n = 0, 1, 2,... Szeregi funkcyjne str. 13/36

Przykład Dla funkcji f(x) = 1 x mamy f(1) = 1 oraz f (x) = 1 x 2 f (1) = 1 f (x) = 2 x 3 f (1) = 2 Wówczas f (x) = 6 x 4 f (1) = 3! f (4) (x) = 24 x 5 f (4) (1) = 4!. f (n) (x) = ( 1) n n! x f (n) (1) = ( 1) n n! n+1 1 x = ( 1) n (x 1) n = (1 x) n, dla 0 < x < 2. Szeregi funkcyjne str. 14/36

Szeregi Maclaurina niektórych funkcji elementarnych 1 1 x = x n = 1 + x + x 2 + x 3 +..., dla x < 1. e x = x n n! = 1 + x + x2 2 + x3 3! +..., dla x R. sin x= ( 1) n (2n + 1)! x2n+1 =x x3 3! + x5 5! x7 7! +..., x R. cos x = ( 1) n (2n)! x2n = 1 x2 2 + x4 4! x6 6! +..., x R. Szeregi funkcyjne str. 15/36

Szeregi Maclaurina niektórych funkcji elementarnych ln(1 + x) = ( 1) n (n + 1) xn+1 = x x2 2 + x3 3 x4 4 +..., 1 < x 1. arc tg x = ( 1) n (2n + 1) x2n+1 = x x3 3 + x5 5 x7 7 +..., 1 < x 1. sinh x= x 2n+1 x3 =x + (2n + 1)! 3! + x5 5! + x7 7! +..., x R. cosh x = x 2n (2n)! = 1 + x2 2 + x4 4! + x6 6! +..., x R. Szeregi funkcyjne str. 16/36

Twierdzenie o różniczkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: c n (x x 0 ) n = n=1 nc n (x x 0 ) n 1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 17/36

Twierdzenie o całkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: x x 0 c n (t x 0 ) n dt = c n n + 1 (x x 0) n+1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 18/36

Sumy ważniejszych szeregów potęgowych x n = 1 1 x, dla x < 1. n=1 nx n = x, dla x < 1. (1 x) 2 n=1 n 2 x n 1 = 1 + x, dla x < 1. (1 x) 3 x n n = ln(1 x), dla 1 x < 1. Szeregi funkcyjne str. 19/36

Aproksymacja funkcji przez wielomian Wzór f(x) ==f(x 0 )+ f (x 0 ) (x x 0 )+... + f (n) (x 0 ) (x x 0 ) n + R n (x), 1! n! gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 < n-ta reszta we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, pozwala przedstawić w sposób przybliżony (aproksymować) funkcję f za pomocą wielomianu (zwanego wielomianem Taylora) f(x) f(x 0 )+ f (x 0 ) 1! (x x 0 )+... + f (n) (x 0 ) n! (x x 0 ) n. Szeregi funkcyjne str. 20/36

Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! +... + xn n!. n = 1 y y = e x y = 1 + x Szeregi funkcyjne str. 21/36 x

Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! +... + xn n!. n = 2 y y = e x y = 1 + x + x2 2 Szeregi funkcyjne str. 21/36 x

Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! +... + xn n!. n = 3 y y = e x y = 1 + x + x2 2 + x3 6 Szeregi funkcyjne str. 21/36 x

Szereg trygonometryczny Szeregiem trygonometrycznym na przedziale l, l nazywamy szereg postaci a 0 2 + n=1 ( a n cos nπx l + b n sin nπx ) l, gdzie a 0 R, a n, b n R dla n N, l jest pewną liczbą dodatnią. Szeregi funkcyjne str. 22/36

Szereg trygonometryczny Fouriera Niech funkcja f będzie całkowalna na przedziale l, l. Szeregiem trygonometrycznym Fouriera nazywamy szereg trygonometryczny a 0 2 + ( a n cos nπx + b n sin nπx ), gdzie l l n=1 oraz a n = 1 l b n = 1 l l l l l f(x) cos nπx l dx, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Piszemy symbolicznie f(x) a 0 2 + n=1 ( a n cos nπx l + b n sin nπx ) l. Szeregi funkcyjne str. 23/36

Funkcję f, ograniczoną w przedziale (a, b), nazywamy przedziałami monotoniczna w tym przedziale, jeżeli przedział (a, b) można podzielić na skończoną liczbę podprzedziałów wewnątrz których funkcja f jest monotoniczna. Szeregi funkcyjne str. 24/36

Warunki Dirichleta Mówimy, że funkcja f spełnia na przedziale a, b warunki Dirichleta, jeżeli 1 f jest przedziałami monotoniczna w przedziale (a, b), 2 f jest ciągła w przedziale (a, b), z wyjątkiem co najwyżej skończonej liczby punktów nieciągłości x 0, takich że f(x 0 ) = 1 2 ( lim x x 0 f(x) + lim x x + 0 f(x) 3 w końcach przedziału (a, b) spełnione są równości f(a) = f(b) = 1 2 ( ) ) lim f(x) + lim f(x) x b x a + Powyższe warunki nazywamy odpowiednio: pierwszym, drugim i trzecim warunkiem Dirichleta. Szeregi funkcyjne str. 25/36

Twierdzenie Dirichleta Jeżeli funkcja f spełnia w przedziale l, l warunki Dirichleta, to jest rozwijalna w tym przedziale w szereg trygonometryczny Fouriera f(x) = a 0 2 + n=1 ( a n cos nπx l + b n sin nπx ) l, (1) dla każdego x l, l. Jeżeli ponadto funkcja f jest okresowa i ma okres 2l, to równość (1) jest prawdziwa dla każdego x z dziedziny tej funkcji. Szeregi funkcyjne str. 26/36

Twierdzenie Jeżeli funkcja f jest parzysta, to oraz a 0 = 2 l l 0 b n = 0, n = 1, 2,... f(x)dx i a n = 2 l Wówczas rozwinięcie (1) dla funkcji parzystej przyjmuje postać l 0 f(x) cos nπx dx, n = 1, 2,.. l f(x) = a 0 2 + n=1 a n cos nπx l. (2) Szeregi funkcyjne str. 27/36

Twierdzenie Jeżeli funkcja f jest nieparzysta, to oraz b n = 2 l l 0 a n = 0, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Wówczas rozwinięcie (1) dla funkcji nieparzystej przyjmuje postać f(x) = n=1 b n sin nπx l. (3) Szeregi funkcyjne str. 28/36

Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozważmy funkcję f, która jest określona i spełnia pierwszy i drugi warunek Dirichleta w przedziale otwartym (0, l). Funkcję tę można przedstawić w przedziale (0, l) w postaci szeregu trygonometrycznego Fouriera składającego się z samych sinusów (3), albo samych kosinusów (2). Szeregi funkcyjne str. 29/36

Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozpatrzmy funkcję pomocniczą f, określoną na przedziale l, l nazywaną przedłużeniem funkcji f. Aby otrzymać rozwinięcie funkcji f w szereg sinusów (3) należy przedłużyć funkcję f w sposób nieparzysty. f (x) = 0, dla x = l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l 0, dla x = l Szeregi funkcyjne str. 30/36

Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Aby otrzymać rozwinięcie funkcji f w szereg kosinusów (3) należy przedłużyć funkcję f w sposób parzysty. f (x) = lim dla x = l x l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l lim x l dla x = l Szeregi funkcyjne str. 31/36

Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 1 y x Szeregi funkcyjne str. 32/36

Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 3 y x Szeregi funkcyjne str. 32/36

Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 5 y x Szeregi funkcyjne str. 32/36

Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 7 y x Szeregi funkcyjne str. 32/36

Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 1 Szeregi funkcyjne str. 33/36 x

Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 3 Szeregi funkcyjne str. 33/36 x

Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 5 Szeregi funkcyjne str. 33/36 x

Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 7 Szeregi funkcyjne str. 33/36 x

Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 1 Szeregi funkcyjne str. 34/36 x

Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 2 Szeregi funkcyjne str. 34/36 x

Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 3 Szeregi funkcyjne str. 34/36 x

Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 4 Szeregi funkcyjne str. 34/36 x

Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 5 Szeregi funkcyjne str. 34/36 x

Podsumowanie Szeregi potęgowe. Szereg Taylora. Szereg Fouriera. Szeregi funkcyjne str. 35/36

Dziękuję za uwagę Szeregi funkcyjne str. 36/36