Funkcje analityczne. Wykład 12
|
|
- Anna Szymańska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać będziemy szeregi Laurenta funkcji holomorficznych w pierścieniu zera i krotności zer funkcji holomorficznych residua i sposoby liczenia residuów funkcji zespolonych.. Szeregi Laurenta Przykład: funkcja holomorficzna w pierścieniu Rozważmy funkcję f : \ { 2, } (z )(z + 2) z \ { 2, }. Zobaczymy, że funkcję f można rozwinąć w zbiorze {z : < z z 0 < 2} pewien typ szeregu o środku w z 0 = 0. 3 z 3 z + 2 = 3z z (dla < z < 2 zachodzi nierówność z < oraz z < ) 6 + z 2 gdzie = 3z = z n 6 a n z n, ( ) n 2 n zn = 3 zn ( ) n zn 3 2n+ { a n = 3, n < 0 ( )n 3 2, n 0 n+ Przykład: funkcja holomorficzna w pierścieniu podsumowanie (z )(z + 2) z \ { 2, }.
2 W obszarze {z : z < } funkcja jest holomorficzna, więc rozwija się w szereg potęgowy o środku w z 0 = 0 ( ( ) n 3 2 3) z n. n+ W obszarze {z : < z < 2} funkcja jest holomorficzna, więc rozwija się w tzw. szereg Laurenta o środku w z 0 = 0 2 Szeregi Laurenta 3 zn + ( ) n zn 3 2n+ Twierdzenie 2. Niech f będzie funkcją holomorficzną w pierścieniu {z : r < z z 0 < R}, gdzie r, R (0, ]. Wówczas f można wyrazić za pomocą szeregu Laurenta w następujący sposób a n (z z 0 ) n = a n (z z 0 ) n + = a n (z z 0 ) n + a n (z z 0 ) n. Współczynniki rozwinięcia można liczyć wzorami a n = f(ξ) dξ, n Z, 2πi (ξ z 0 ) n+ gdzie jest dowolnym okręgiem o środku w z 0 i promieniu s (r, R). n= Szeregi Laurenta Niech f będzie dana za pomocą szeregu Laurenta } {{ } część regularna a n (z 0 ) n a n (z z 0 ) n = a n (z z 0 ) n + a n (z z 0 ) n. n= } {{ } część osobliwa Szereg Laurenta jest zbieżny bezwględnie oraz niemal jednostajnie w pierścieniu zbieżności. W pierścieniu zbieżności szereg Laurenta jest zbieżny: punktowo niemal jednostajnie bezwzględnie 2. Osobliwości funkcji zespolonych Krotność zera Mając wielomian W, np. W (z) = z n + a n z n + + a z + a 0, z 0 nazywamy zerem k-krotnym, jeśli W (z) = (z z 0 ) k (z z )... (z z i ). Zauważmy, że w powyższym przykładzie, jesli z 0 jest zerem k-krotnym, to W (z 0 ) = W (z 0 ) = = W (k ) (z 0 ) = 0 oraz W (k) 0. 2
3 Uogólnimy pojęcie krotności zera dla dowolnej funkcji holomorficznej. Jeśli f można przedstawić w postaci szeregu Taylora, czyli a n (z z 0 ) n, to mówimy, że f ma zero k-krotne w punkcie z 0, jeśli a 0 = a = = a k = 0 oraz a k 0. Krotność zera Jeśli oraz w z 0 f ma zero k-krotne, to a n (z z 0 ) n oraz a k+n 0, n = 0,,... a n (z z 0 ) n = (z z 0 ) k n=k a n+k (z z 0 ) n Osobliwości funkcji zespolonych Mówimy, że funkcja f ma w punkcie z 0 osobliwość izolowaną, jeśli f jest holomorficzna w pewnym otoczeniu z 0, ale nie jest holomorficzna w punkcie z 0. Na przykład funkcja f : z z ma osobliwość w punkcie z 0 = 0. Szeregi Laurenta wykorzystuje się do klasyfikowania punktów osobliwych. Rodzaje osobliwości funkcji zespolonych Niech f będzie funkcją zespoloną mającą w punkcie z 0 osobliwość izolowaną. Wówczas a n (z z 0 ) n z z 0 < r. Jeśli f ma osobliwość pozorną, jeśli a n = 0 dla wszystkich n < 0 f ma biegun k-tego rzędu, jeśli a k 0 oraz a n = 0 dla wszystkich n < k f ma osobliwość istotną, jeśli istnieje taki nieskończony ciąg liczb naturalnych k n, że a kn 0 Rodzaje osobliwości funkcji zespolonych Twierdzenie 3. Przypuśćmy, że f ma osobliwość izolowaną w z 0 jeśli f ma osobliwość pozorną w z 0, to granica lim istnieje jeśli f ma biegun w z 0, to jeśli f ma istotną osobliwość w z 0, to lim = lim nie istnieje. 3
4 Twierdzenie Picarda z z z e z Twierdzenie 4 (Picard). Jeśli funkcja f jest analityczna w otoczeniu punktu w oraz ma w tym punkcie osobliwość istotną, to w każdym (w szczególności dowolnie małym!) otoczeniu punktu w funkcja f przyjmuje wszystkie wartości zespolone z wyłączeniem co najwyżej jednej. Osobliwości funkcji zespolonych: przykład Jeśli f = g h oraz g w z 0 zero k-go rzędu, natomiast h ma w z 0 zero n-go rzędu oraz n > k, to Jest tak, gdyż gdzie f(z 0 ) 0. g(z) h(z) = f ma w z 0 biegun n k-go rzędu. (z z 0 ) k a i+k (z z 0 ) i i=0 = (z z 0 ) k n, (z z 0 ) n b i+n (z z 0 ) i i=0 Na przykład, ma w z 0 = 0 biegun 4 = 3-go rzędu. z cos z sin 4 z Osobliwości funkcji zespolonych podsumowanie Przypuśćmy, że f ma w punkcie z 0 osobliwość izolowaną funkcja a n (z z 0 ) n. osobliwość pozorna biegun k-tego rzędu osobliwość istotna lim istnieje szereg a n = 0 dla n < 0 lim = a k 0, a n = 0 dla n < k 4 lim nie istnieje a kn 0 dla nieskończonego ciągu k n
5 3. Residua Residuum funkcji Przypuśćmy, że funkcja f będzie miała osobliwość w punkcie z 0. Przedstawmy f w postaci szeregu Laurenta a n (z z 0 ) n z z 0 < r. Niech będzie krzywą regularną dodatnio zorientowaną. Ze względu na to, że szereg Laurenta zbieżny jest bezwzględnie oraz niemal jednostajnie możemy napisać dz = a n (z z 0 ) n = = 2πi Ind (z 0 )a. a n (z z 0 ) n dz W szczególności, jeśli z 0 leży w obszarze ograniczonym krzywą mającą indeks, czyli np. będącą okręgiem o środku w z 0 i promieniu mniejszym niż r, to dz = 2πia Residuum funkcji Jeśli a n (z z 0 ) n, to współczynnik a nazywamy residuum funkcji f w punkcie z 0. Twierdzenie o residuach Twierdzenie 5. Niech f będzie funkcją holomorficzną w zbiorze D poza skończoną liczbą punktów osobliwych {z, z 2,..., z n } leżących wewnątrz obszaru ograniczonego krzywą regularną. Wówczas dz = 2πi n Ind (z k ) res(f, z k ). k= Obliczanie residuów: biegun pierwszego rzędu Twierdzenie 6. Jeśli funkcja f ma w punkcie z 0 biegun pierwszego rzędu, to res(f, z 0 ) = lim (z z 0 ). Przypuśćmy, że a z z 0 + a o + a (z z 0 ) + a 2 (z z 0 ) Mnożąc stronami powyższą równość przez z z 0 otrzymujemy (z z 0 ) a + a 0 (z z 0 ) + a (z z 0 ) }{{} suma szeregu potęgowego Z tego, że szereg potęgowy jest funkcja ciągłą wynika, że lim (z z 0 ) a = res(f, z 0 ). 5
6 Obliczanie residuów: biegun wyższego rzędu Twierdzenie 7. Jeśłi funkcja f ma w punkcie z 0 biegun m-tego rzędu, to res(f, z 0 ) = Obliczanie residuów: biegun pierwszego rzędu ( ) (m ) lim (z z 0 ) m (m )! Twierdzenie 8. Jeśli funkcja f = g h ma w punkcie z 0 biegun pierwszego rzędu oraz h (z 0 ) 0, to res(f, z 0 ) = g(z 0) g (z 0 ) Zauważmy, że jeśli f ma biegun pierwszego rzędu w z 0, to h(z 0 ) = 0. Ponadto res(f, z 0 ) = lim (z z 0 ) g(z) h(z) = lim g(z) = g(z 0) h (z 0 ). z z 0 h(z) h(z 0) Twierdzenie o residuach: wzór całkowy auchy ego Niech f H(A) oraz jest krzywą regularną zawartą w A oraz niech Ind (z) = dla każdego punktu z leżącego wewnątrz obszaru ograniczonego krzywą. Wówczas funkcja (z z 0 ) n ma w punkcie z 0 biegun rzędu co najwyżej n. Z twierdzenia o residuach wynika teraz, że (z z 0 ) n dz = 2πi ( lim (z z 0 ) n ) (n ) (n )! (z z 0 ) n Stąd otrzymujemy wzór całkowy auchy ego = 2πi f (n ) (z 0 ). (n )! (n) (z z 0 ) n+ dz = 2πif (z 0 ). n! 4. Zadania na ćwiczenia. Niech, z \ {i, 2}. (z i)(z + 2) Proszę rozwinąć funkcję f w szereg Laurenta w pierścienie { z : < z < 2 }, { z : 2 < z } 2. Proszę rozwinąć funkcję w szereg Laurenta w pierścieniu z 2 (z + i), z \ { i} { z : 0 < z + i < }. 3. Znaleźć szereg Laurenta funkcji exp(/z) dla z > 0. 6
7 4. Wyznaczyć obszar, w którym zbieżny jest dany szereg Laurenta oraz znaleźć sumę tego szeregu (funkcję do jakiej zbieżny jest niemal jednostajnie). z n 2 n z n. 5. Proszę określić krotność zera z 0 funkcji f z exp(z), z 0 = 0, z 2 sin z, z 0 = 0, ( π 2 z)2, z 0 = π cos z Proszę określić punkty osobliwości oraz określić ich rodzaj dla funkcji f: ez z, cos z z 2, z 2 exp ( ), z (z ) 2 e2z z 4, e iz z 2 + 6iz Proszę obliczyć, residua funkcji f w punktach osobliwych e2z z 4, e iz z 2 + 6iz 9, sin z z 2 + z Proszę obliczyć całki z=2 z=2 e 2z z 4 dz, e z z 2 dz, z 2 exp ( ) z dz. z =2 e z+4 sin z dz. z= 7
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
6. Punkty osobliwe, residua i obliczanie całek
6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume
Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny
Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)
Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Funkcje Analityczne Grupa 3, jesień 2008
Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Funkcje Analityczne, ćwiczenia i prace domowe
Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego
Spis treści. Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach. Wstęp... Oznaczenia... Zadania. 1. Liczby zespolone...
Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach Wstęp... Oznaczenia... XI XIII Zadania 1. Liczby zespolone... 3 1.1. Własności liczb zespolonych... 3 1.1.A. Zadania łatwe... 4 1.1.B. Zadania
SZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.
WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki
z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1
3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ
Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A
Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia
, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0
A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz
Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k
Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć
FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim FUNKCJE ANALITYCZNE Nazwa w języku angielskim Analytic Functions Kierunek studiów (jeśli dotyczy): Matematyka
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Krzysztof Rykaczewski. Szeregi
Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).
Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając
WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU
WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Kurs wyrównawczy - teoria funkcji holomorficznych
Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka
AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Temat: Ciągi i szeregi funkcyjne
Emilia Domińczyk Aleksandra Chrzuszcz Temat: Ciągi i szeregi unkcyjne 1.Co to jest ciąg unkcyjny? Co to jest szereg unkcyjny? Podać przykłady. Deinicja ciągu unkcyjnego Niech X c R, X Ø. Funkcję określoną
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza
Funkcje zespolone. Agata Pilitowska 2007 1 Liczby zespolone Definicja 1.1. Liczba zespolona jest to para uporza dkowana (x, y) liczb rzeczywistych x, y R. Dwie liczby zespolone z = (x, y) i w = (u, v)
dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba
1. Liczby zespolone Cia lo liczb rzeczywistych be dziemy oznaczać symbolem R, pierścień liczb ca lkowitych symbolem Z, a zbiór liczb naturalnych symbolem N. Przyjmujemy, że 0 / N. Rozważmy zbiór C = R
Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści
Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N
14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
KIERUNEK STUDIÓW: ELEKTROTECHNIKA
1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III
Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.
Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu
Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że
4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk
Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk
Funkcje. Granica i ciągłość.
Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
EGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem
Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0
EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru
Analiza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA
Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N
Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.
Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura
Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii
Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze
Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17
41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Twierdzenie o liczbach pierwszych i hipoteza Riemanna
o liczbach pierwszych i hipoteza Riemanna Artur Ulikowski Politechnika Gdańska 10 marca 2009 o liczbach pierwszych Legendre, badając rozkład liczb pierwszych, postawił następującą hipotezę: Niech π(x)
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1
KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów
PW Wydział Elektryczny Rok akad. 2017 / 2018 Podstawowe Informacje dla studentów Piotr Multarzyński, e-mail: multarynka@op.pl, konsultacje: Zob isod. Przedmiot: Matematyka 1 Cel przedmiotu: Zapoznanie