to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane) to ich wzajemny wp lyw musi być uwzglȩdniony wariacyjnie n {E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn c nn = E n ( k)c nn (1) gdzie p nn = u.c. u n k 0 ( r) pu n k 0 ( r)d 3 r wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina * przestrzeń wszystkich pasm dzielimy na 2 grupy: (A) bliskie energetycznie (B) energetycznie odleg le w stosunku do grupy (A) grupȩ (A) traktuje siȩ wariacyjnie; odleg le pasma modyfikuj a elementy macierzowe uk ladu wariacyjnego 1
powyższe równanie można zapisać operatorowo: (przyjmuj a dla uproszczenia k 0 = 0) gdzie {Ĥ0 + h m k p + h2 2m k2 }u nk ( r) = E n ( k)u nk ( r) (2) H 0 u n0 ( r) = E n (0)u n0 ( r) u nk ( r) = n c nn u n 0( r) zobaczmy jak to wygl ada dla trywialnego przypadku gdy (A) - jedno pasmo (B) jedno pasmo H aa H ab H ab H bb c 1 c 2 = E c 1 c 2 szukamy takiej transformacji, która zdiagonalizuje H do H H aa 0 0 Hbb znajduj ac pierwiastki równania sekularnego, z dok ladnpści a do wyrazów II-rzȩdu w rozwiniȩciu ma lego H ab dostaniemy: H aa = H aa H 2 ab (H bb H aa ) to równanie jest prawdziwe tak dla reprezentacji macierzowej operatora H jak i dla postaci operatorowej (2), i wtedy w rachunku zaburzeń 2
(bo to przypomina II rz ad RZ) trzeba po lożyć H aa E a (0), H bb E b (0) zobaczmy czym jest ta poprawka dla H = h m k p + h2 2m k2 (drugi wyraz jest diagonalny i jest już uwzglȩdniony w H aa ) dostajemy poprawkȩ operatorow a d H 0 h 2 m 2 a k p b b k p a E b E a jeśli stanów w grupie (B) jest wiȩcej to pojawi siȩ suma po (b) w sensie macierzowym, jako poprawka do wyrazu E a (0) + h2 2m k2 daje dok ladnie poprawkȩ do masy efektywnej pochodz ac a od odleg lych pasm. proces ten nazywa siȩ renormalizacj a masy gdy w (A) zawartych jest wiȩcej pasm, które na ogól s a w k o zdegenerowane to: H aa = H aa H ab H ba E b (0) E a (0) 3
te wklady do elementów macierzowych czȩści (A) hamiltonianu traktowane s a jako empiryczne parametry zwi azane z mierzonymi masami efektywnymi mog a być też obliczane z zasad pierwszych (szacowane) PRZYBLIŻENIE FUNKCJI OBWIEDNI (EFA) metoda kp pozwala znaleźć zależność dyspersyjn a E n (k) dla interesuj acych nas pasm w pobliżu punktów ekstremalnych k EFA pozwala znaleźć kwazidyskretne lub ca lkowicie dyskretne poziomy energetyczne w pobliżu den pasm w przypadku przestrzennego ograniczenia materia lu litego (bulk) do rozmiarów mezoskopowych - albo dla domieszek (lokalne zaburzenie periodyczności) - albo w obecności zewnȩtrznych pól (globalne zaburzenie periodyczności) IDEA formalnie do hamiltonianu H 0 do l aczamy potencja l zaburzaj acy U( r): { p2 2m + V per( r) + U( r)}ψ( r) = Eψ( r) (3) k - przestaje być dobr a liczb a kwantow a w obliczu zaburzenia periodyczności kryszta lu 4
zatem: Ψ( r) = n,k e i k r c n ( k)u n,0 ( r) = n f n( r)u n,0 ( r) gdzie f n ( r) = k e i k r c n ( k) po wstawieniu do równania Hψ = Eψ i pamiȩtaj ac, że H 0 u n,0 ( r) = E n (0)un, 0( r) dostajemy {u n,0( r)[e n (0) E + p2 n 2m ]f n( r) + 1 m ( pu n,0)( pf n )} = 0 (4) mnoż ac z lewej strony przez f n u n,0 i ca lkuj ac po obj. dostajemy: Ω ca lego uk ladu n ( Ω u n,0u n,0 f n [E n(0) E+ p2 2m ]f nd 3 r+ 1 m Ω {(u n,0 pu n,0 )(f n pf n)}d 3 r) = 0 pod ca lkami mamy iloczyny funkcji wolno i szybko zmiennych (5) zobaczmy jak możemy takie ca lki przybliżyć to przybliżenie jest PODSTAWA metody EFA rozważmy sytuacjȩ I = Ω f( r)u( r)d3 r 5
gdzie f - wolnozmienna (na obszarze kom.elem. Ω 0 a u - okresowa z periodyczności a V p er( r) u( r) można przedstawić w postaci rozwiniȩcia Weierstrassa na funkcje okresowe (opuszczam wektory dla uproszczenia) U(r) = g u(g)eigr gdzie {g} to wektory sieci odwrotnej; a to jest rozk lad Fourierowski, zatem u(g) = 1 Ω Ω u(r)e igr d 3 r ale u(r) jest identyczne w każdej kom.elem. i N Ω = 1 Ω 0 to = 1 Ω 0 Ω 0 u(r)e igr d 3 r zatem I = Ω g u(g)f(r)eigr d 3 r = g u(g) Ω f(r)eigr d 3 r tȩ ostatni a ca lkȩ można roz lożyć na szereg ca lek po kom.element. R i Ω i d 3 ρf(r i + ρ)e igρ gdzie ρ przebiega tylko po obj. kom.elem. 6
ale f(r) ma być wolno zmienna w ramach Ω i, f(r i + ρ) f(r i ) to I = g u(g) R i f(r i ) Ω i e igr d 3 r ostatnia ca lka przeżywa tylko dla g = 0, zatem I = u(0) R i f(r i ) u(0) Ω f(r)d3 r ale u(0) = 1 Ω u(r)d 3 r zatem I 1 Ω Ω u(r)d3 r Ω f(r)d3 r wracaj ac do równania (5) możemy teraz rozdzielić ca lkowania funkcji u( r) i f( r), a pamiȩtaj ac, że u n,0( r)u n,0 ( r)d 3 r = δ n,n u n,0( r) pu n,0 ( r)d 3 r = p n,n 7
możemy równanie (5) zapisać jako Ω d3 rf n [ n {[E n(0) E + p2 2m ]δ n,n + 1 m p n,n p}f n( r)] = 0 n =... to bȩdzie spe lnone gdy {[E n(0) E + p2 n 2m ]δ n,n + 1 m p n,n p}f n( r) = 0 (6) to jest uk lad sprzȩżonych równań na funkcje obwiedni f n ( r), a pamiȩtamy, że ca la funkcja ψ( r) = n f n( r)u n,0 ( r) Zauważmy podobieństwo tego równania do równania (1) przy k 0 = 0 jeśli tylko zast apić w (1) k j i δ, j = x, y, z (7) δj Podobnie, jeśli elementy hamiltonianu kp zosta ly zrenormalizowane poprawk a na oddzia lywanie odleg lych pasm to tutaj też ona siȩ pojawi w postaci 1 1 ( p 2m 2 n b p nb p)( + E n E b b 1 E n E b ) 8