Kondensat Bosego-Einsteina okiem teoretyka
|
|
- Ryszard Wiktor Rutkowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński
2 Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady. Problem pojedynczych pomiarów uk ladu N cia l. Gazy fermionowe.
3 Kondensacja Bosego-Einsteina n 0 = 1 e (E 0 µ)/k B T 1 T c 100 nk N
4 Oddzia lywania mie dzy atomami Oddzia lywanie van der Waalsa 1 r 6, średnia odleg lość mie dzy atomami zasie g potencja lu oddzia lywania, k B T 0 zderzenia mie dzy atomami zdominowane przez fale typu s (zerowy moment pe du), zatem: V ( r) = g 0 δ( r) g 0 = 4π 2 m a sc
5 Nierozróżnialność atomów Ĥ = N i=1 ] [ 2 2m 2 i + U( r i ) + g 0 2 N i j=1 δ( r i r j ) Ψ( r 1,..., r N )
6 Nierozróżnialność atomów Ĥ = N i=1 ] [ 2 2m 2 i + U( r i ) + g 0 2 N i j=1 δ( r i r j ) Ψ( r 1,..., r N ) n 0, n 1, n 2,..., ˆψ( r) = φ i ( r) â i i=1 Ĥ = [ d 3 r ˆψ 2 2m 2 + U( r) + g ] 0 2 ˆψ ˆψ ˆψ
7 Co to jest kondensat? Brak oddzia lywań (idealny kondensat): Ψ( r 1, r 2,..., r N ) = φ 0 ( r 1 ) φ 0 ( r 2 )... φ 0 ( r N ) N, 0, 0,...,
8 Co to jest kondensat? Brak oddzia lywań (idealny kondensat): Ψ( r 1, r 2,..., r N ) = φ 0 ( r 1 ) φ 0 ( r 2 )... φ 0 ( r N ) N, 0, 0,..., sta d jednocza stkowa macierz ge stości: ρ( r; r ) = ˆψ ( r) ˆψ( r ) = N Ψ ( r, r 2,..., r N ) Ψ( r, r 2,..., r N ) d 3 r 2... d 3 r N = N φ 0( r) φ 0 ( r )
9 Co to jest kondensat? Brak oddzia lywań (idealny kondensat): Ψ( r 1, r 2,..., r N ) = φ 0 ( r 1 ) φ 0 ( r 2 )... φ 0 ( r N ) N, 0, 0,..., sta d jednocza stkowa macierz ge stości: ρ( r; r ) = ˆψ ( r) ˆψ( r ) = N Ψ ( r, r 2,..., r N ) Ψ( r, r 2,..., r N ) d 3 r 2... d 3 r N = N φ 0( r) φ 0 ( r ) W obecności oddzia lywań: ρ( r; r ) = N 0 φ 0( r) φ 0 ( r ) + i=1 dn i φ i ( r) φ i ( r ), N 0 N, dn = dn i N i=1
10 Teoria Bogoljubowa Y. Castin & R. Dum, PRA 57, 3008 (1998) ˆψ( r) = φ 0 ( r) â 0 + δ ˆψ( r),
11 Teoria Bogoljubowa Y. Castin & R. Dum, PRA 57, 3008 (1998) ˆψ( r) = φ 0 ( r) â 0 + δ ˆψ( r), zerowy rza d (równanie Grossa-Pitajewskiego): δ N Ĥ (0) N = 0 [ 2 2m 2 + U( r) + g 0 N φ 0 ( r) 2 ] φ 0 = µ φ 0
12 Teoria Bogoljubowa Y. Castin & R. Dum, PRA 57, 3008 (1998) ˆψ( r) = φ 0 ( r) â 0 + δ ˆψ( r), zerowy rza d (równanie Grossa-Pitajewskiego): δ N Ĥ (0) N = 0 drugi rza d (równania Bogoljubowa): Ĥ (2) = n ] [ 2 2m 2 + U( r) + g 0 N φ 0 ( r) 2 φ 0 = µ φ 0 E n ˆb n ˆbn, ˆb n = 1 [ u n δ ˆψ â 0 v n δ ˆψ ] â 0 N próżnia Bogoljubowa: ˆb n 0 B = 0
13 Próżnia Bogoljubowa J. Dziarmaga & KS, PRA 67, (2003) ( 0 B â 0 â 0 + i=1 λ i â i â i ) N/2 0 dni λ i = dn i + 1
14 Wiry w kondensacie - w kierunku kwantowego efektu Halla [ 12 2 ΩˆL z + 12 r 2 + g 0 N φ( r) 2 ] φ( r) = µ φ( r), J. R. Abo-Shaeer et al., Science 292, 476 (2001)
15 Kondensat w podwójnej studni potencja lu - z la cze Josephsona H Ω 2 ( ) ) â 1â2 + â 2â1 + U 2 (â 1 a 1â1â 1 + â 2 a 2â2â 2 U NΩ 1 H NU 2Ω n2 1 n 2 cos φ, n = N 1 N 2, φ = φ 1 φ 2 N M. Albiez et al., PRL 95, (2005)
16 Izolator Motta i szk lo Bosego Ĥ = Ω â i 2 âj + U ˆn i (ˆn i 1), 2 i,j średnio 1 atom na oczko i U Ω 1: kondensat U Ω 1: 1, 1, 1,... M. Greiner et al., Nature 415, 39 (2002)
17 Interferencja dwóch kondensatów N 2 cza } stek w stanie eiπx stek w stanie e iπx N 2 cza ρ(x, x) = ˆψ (x) ˆψ(x) = N N 2, N 2
18 Interferencja dwóch kondensatów N 2 cza } stek w stanie eiπx stek w stanie e iπx N 2 cza ρ(x, x) = ˆψ (x) ˆψ(x) = N N 2, N 2 M. R. Andrews et al., Science 275, 637 (1997)
19 Interferencja dwóch kondensatów N 2 cza } stek w stanie eiπx stek w stanie e iπx N 2 cza ρ(x, x) = ˆψ (x) ˆψ(x) = N N 2, N 2 M. R. Andrews et al., Science 275, 637 (1997) J. Javanainen and S. Mi. Yoo, PRL 76, 161 (1996)
20 Ciemny soliton w kondensacie J. Dziarmaga, Z. Karkuszewski & KS, JPB 36, 1217 (2003); ibid. 39, 57 (2006) [ 12 2x + g 0 N φ 0 2 ] φ 0 = µ φ 0, φ 0 (x) tanh ( ) x ξ
21 Ciemny soliton w kondensacie J. Dziarmaga, Z. Karkuszewski & KS, JPB 36, 1217 (2003); ibid. 39, 57 (2006) Gross-Pitajewski: [ 12 2x + g 0 N φ 0 2 ] ρ(x, x) = N φ 0 (x) 2 φ 0 = µ φ 0, φ 0 (x) tanh ( ) x ξ
22 Ciemny soliton w kondensacie J. Dziarmaga, Z. Karkuszewski & KS, JPB 36, 1217 (2003); ibid. 39, 57 (2006) [ 12 2x + g 0 N φ 0 2 ] φ 0 = µ φ 0, φ 0 (x) tanh ( ) x ξ Gross-Pitajewski: ρ(x, x) = N φ 0 (x) 2 Bogoljubow: ρ(x, x) = N φ 0 (x) 2 + v 1 (x) 2
23 Ciemny soliton w kondensacie J. Dziarmaga, Z. Karkuszewski & KS, JPB 36, 1217 (2003); ibid. 39, 57 (2006) ( ) N/2 0 B â 0 â 0 + λ â 1 â 1 0
24 Ciemny soliton w kondensacie J. Dziarmaga, Z. Karkuszewski & KS, JPB 36, 1217 (2003); ibid. 39, 57 (2006) ( ) N/2 0 B â 0 â 0 + λ â 1 â 1 0 atomy 87 Rb, N = , ω x = 2π 14 Hz, ω = 2π 425 Hz
25 Gazy fermionowe Przejście BCS-BEC Rezonanse Feshbacha:
26 Gazy fermionowe Przejście BCS-BEC Przejście BCS-BEC: Rezonanse Feshbacha: M. W. Zwierlein et al., Nature 435, 1047 (2005)
27 Podsumowanie Zimne gazy atomowe daja możliwość niespotykanie dużej kontroli eksperymentalnej i niezwykle dok ladnego opisu teoretycznego. Zjawiska przewidywane w różnych dziedzinach fizyki moga być badane w zimnych gazach atomowych. Silnie skorelowane uk lady, nieporza dek i nadprzewodnictwo (przejście BCS-BEC) wydaja sie być najciekawszymi zagadnieniami rozwijanymi obecnie.
Kondensacja Bosego-Einsteina
Kondensacja Bosego-Einsteina W opisie kwantowo-mechanicznym stan konkretnego uk ladu fizycznego jest określony poprzez funkcje falowa ψ r, r 2,...), gdzie r i oznaczaja po lożenia poszczególnych cza stek.
Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie.
Odolanów, 10 lipca 2008 r. Najzimniejsze atomy Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman Referat be dzie dotyczyć : kondensacji i nadciekłości
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
Lublin, 7 VI ultrazimnych atomów. T. Domański. Instytut Fizyki UMCS.
Lublin, 7 VI 2006 Nadciekłość w układach ultrazimnych atomów T. Domański Instytut Fizyki UMCS http://kft.umcs.lublin.pl/doman/lectures Tematem tego Sympozjum sa różne zjawiska fizyczne, które maja miejsce
Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula
Streszczenie W13 pułapki jonowe: siły Kulomba 9 pułapki Penninga, Paula G pojedyncze jony mogą być pułapkowane i oglądane 9 kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
(obserw. na Ŝywo emisji/abs. pojed. fotonów w pojed. atomach) a) spontaniczne ciśnienie światła (rozpraszają en. chłodzą)
Streszczenie W11 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański
Toruń, 22 września 2006 r. Nadprzewodnictwo i nadciekłość w układach oddziałuja cych mieszanin bozonowo-fermionowych Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures
JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba
Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów zastosowanie w komputerach kwantowych? przeskoki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Cele Cele Wyznaczenie średniego obsadzenia średniej energii równania stanu dla nieodziałujących gazów kwantowych fermionowego (gaz elektronowy w ciele stałym) bozonowego (kondensaty)
Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych
LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach
Teoria funkcjona lu g Density Functional Theory (DFT)
Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego
Rotacje i drgania czasteczek
Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji
P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
Hierarchia baz gaussowskich (5)
Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)
Zimne gazy fermionowe
UNIWERSYTET JAGIELLOŃSKI KRAKÓW WYDZIAŁ FIZYKI, ASTRONOMII I INFORMATYKI STOSOWANEJ INSTYTUT FIZYKI IM. MARIANA SMOLUCHOWSKIEGO Zimne gazy fermionowe Samolokalizacja domieszki kondensatu Bosego Einsteina
Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym. P. F. Góra
Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Operator gęstości W przypadku klasycznym chcieliśmy znać gęstość stanów układu. W przypadku
Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń
Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse
Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I
Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E
Zimne atomy w sieciach optycznych - modelina XXI wieku
Zimne atomy w sieciach optycznych - modelina XXI wieku Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, Kraków, Poland 2012
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Kondensaty Bosego-Einsteina
Ostrów Wielkopolski, 14 X 2009 r. Kondensaty Bosego-Einsteina / przegla d współczesnych realizacji / Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej http://kft.umcs.lublin.pl/doman/lectures Ostrów Wielkopolski,
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,
Nadpłynny gaz, ciecz i ciało stałe
Nadpłynny gaz, ciecz i ciało stałe Nadpłynność Nadpłynność powstaje wskutek kondensacji Bosego - Einsteina bozonów: hel 4 (1938), gazy atomowe (np. Rb, Na, 1995), kryształ helu 4? S. N. Bose A. Einstein
Postulaty mechaniki kwantowej
Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu
{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r
to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)
Metoda oddzia lywania konfiguracji (CI)
Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator
i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij
Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ
Metoda pól klasycznych w opisie gazu bozonowego w równowadze termodynamicznej
Emilia Witkowska Metoda pól klasycznych w opisie gazu bozonowego w równowadze termodynamicznej Praca doktorska napisana pod kierunkiem doc. dr hab. Mariusza Gajdy Instytut Fizyki Polskiej Akademii Nauk
Kondensacja Bosego-Einsteina
Kondensacja Bosego-Einsteina W opisie kwantowo-mechanicznym stan konkretnego uk ladu fizycznego jest określony poprzez funkcje falowa ψ( r 1, r 2,...), gdzie r i oznaczaja po lożenia poszczególnych cza
Uk lady modelowe II - oscylator
Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
pułapki jonowe: siły Kulomba łodzenie i pułapkowanie neutralnych atomów pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane
Streszczenie W13 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
Uklady modelowe III - rotator, atom wodoru
Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R
Fizyka na usługach inżynierii finansowej 1
Fizyka na usługach inżynierii finansowej 1 Plan referatu 1. Zwiazek ekonomii z naukami ścisłymi 2. Ekonofizyka 3. Metody fizyki w inżynierii finansowej Bładzenie przypadkowe Uniwersalność Korelacje Macierze
Zastosowanie metod matematycznych w fizyce i technice - zagadnienia
Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina
Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane) to ich wzajemny wp lyw musi być uwzglȩdniony wariacyjnie - w I rzȩdzie RZ dla stanow zdegenerowanych
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Bosego-Einsteina atomów 87 Rb
Uniwersytet Jagielloński Wydział Fizyki, Astronomii i Informatyki Stosowanej Fizyka Rozprawa doktorska Doświadczalne badania kondensatu Bosego-Einsteina atomów 87 Rb Marcin Witkowski prof. dr hab. Wojciech
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna
Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami
zastosowanie w komputerach kwantowych? przeskoki kwantowe (obserw. na żywo emisji/abs. pojed. fotonów w pojed. atomach)
Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F
SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Metody obliczeniowe chemii teoretycznej
Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave
POLITECHNIKA WARSZAWSKA. Wydział Fizyki ROZPRAWA DOKTORSKA. mgr inż. Gabriel Robert Wlazłowski
POLITECHNIKA WARSZAWSKA Wydział Fizyki ROZPRAWA DOKTORSKA mgr inż. Gabriel Robert Wlazłowski Zbadanie właściwości rozrzedzonego gazu silnie oddziałujących fermionów metodą Monte Carlo Promotor dr hab.
5. Obliczanie pochodnych funkcji jednej zmiennej
Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l
TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Lokalizacja Andersona solitonów w kondensacie Bosego - Einsteina
Uniwersytet Jagielloński Wydział Fizyki, Astronomii i Informatyki Stosowanej Instytut Fizyki im. Mariana Smoluchowskiego Lokalizacja Andersona solitonów w kondensacie Bosego - Einsteina Autor: Marcin Płodzień
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Atom dwupoziomowy w niezerowej temperaturze
Seminarium CFT p. 1/24 Atom dwupoziomowy w niezerowej temperaturze Tomasz Sowiński 1 paździenika 2008 Seminarium CFT p. 2/24 Atom dwupoziomowy Hamiltonian Ĥ = Ĥ0 + ĤI Ĥ 0 = mσ z + 0 dk k a (k)a(k), Ĥ I
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Odolanów, 4 VII ultrazimnych atomów. T. Domański. Instytut Fizyki UMCS.
Odolanów, 4 VII 2006 Nadciekłość w układach ultrazimnych atomów T. Domański Instytut Fizyki UMCS http://kft.umcs.lublin.pl/doman/lectures Plan wykładu: Plan wykładu: Kondensacja Bosego-Einsteina Plan wykładu:
Chłodzenie jedno-wymiarowego gazu bozonów
Chłodzenie jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E. Witkowska, PD, M. Gajda, K.
Promieniowanie cia la doskonale czarnego
Rozdzia l 2 Promieniowanie cia la doskonale czarnego 2.1 Wste ι p 1. Stosunek zdolności emisyjnej dowolnego cia la do jego zdolności absorpcyjnej jest sta ly i równy zdolności emisyjnej cia la doskonale
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
O kondensacie BosegoEinsteina powstaj cym w ZOA
O kondensacie BosegoEinsteina powstaj cym w ZOA Dobrosªawa BartoszekBober Zakªad Optyki Atomowej IF UJ 9 maja 2011 Dobrosªawa BartoszekBober 9 maja 2011 1 / 15 Plan seminarium BEC na chipie Budowa ukªadu
Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5
Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia
w jednowymiarowym pudle potencja lu
Do wyk ladu II czastka w pudle potencja lu oscylator harmoniczny rotator sztywny Ścis le rozwiazania równania Schrödingera: atom wodoru i jon wodoropodobny) Czastka w jednowymiarowym pudle potencja lu
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m
Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)
Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a
= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową. Metody wytwarzania
Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową a 1 = a (a c-c )x(3) 1/ ( 3 a, ), ( 3 a a a = a, ) wektory bazowe sieci odwrotnej definiuje się inaczej niż w 3D musi zachodzić
Ujemna temperatura bezwzględna
Inspiracja Pytanie mojej 13-letniej wnuczki Marty/Maci: Czy temperatura, mierzona w skali Kelvina, może być niższa od zera? Inspiracja Pytanie mojej 13-letniej wnuczki Marty/Maci: Czy temperatura, mierzona
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Spinowa Struktura Nukleonu
Spinowa Struktura Nukleonu Marcin Stolarski CERN nukleon i jego spin doświadczenie COMPASS 6-XI-007 M. Stolarski, xxx-xxx Strona 1 Jednostki i skale mikroświata jednostki energii i odleg lości Giga elektronowolt
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
wstrzykiwanie "dodatkowych" nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n)
UKŁADY STUDNI KWANTOWYCH I BARIER W POLU LEKTRYCZNYM transport podłużny efekt podpasm energia kinetyczna ruchu do złącz ~ h 2 k 2 /2m, na dnie podpasma k =0 => v =0 wstrzykiwanie "dodatkowych" nośników
stany ekscytonowo-fononowe w kryszta lech oligotiofenów
Wst ep Niezwiazane stany ekscytonowo-fononowe w kryszta lech oligotiofenów Zak lad Chemii Teoretycznej 24 październik 2007 Wst ep Dlaczego oligotiofeny? Oligotiofeny Zwiazki chemiczne zbudowane z po l
Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)
Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
O spl ataniu kwantowym s lów kilka
O spl ataniu kwantowym s lów kilka Krzysztof Byczuk Instytut Fizyki Teoretycznej, Uniwersytet Warszawski http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html 30 styczeń 2006 Rozważania Einsteina,
Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
2. Równania nieliniowe i ich uk lady
Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?
w rozrzedzonych gazach atomowych
w rozrzedzonych gazach atomowych Anna Okopińska Instytut Fizyki S P IS T RE Ś C I I WSTĘP II. TEORIA ZDEGENEROWANYCH GAZÓW DOSKONAŁYCH III. WŁASNOŚCI MATERII W NISKICH TEMPERATURACH IV. METODY CHŁODZENIA
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
kondensat Bosego-Einsteina
kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Dynamika molekularna - gaz van der Waalsa
Hamiltonian uk ladu Dynamika molekularna - gaz van der Waalsa Sk lada siȩ z N atomów u, oddzia luj acych parami miȩdzy sob a oraz ze ściankami sferycznego naczynia. Oddzia lywania opisuje potencja l Lennarda-
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
g liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie