Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych"

Transkrypt

1 Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 1/27

2 Agenda Problem Problem P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 2/27

3 Problem P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 3/27

4 Problem w postaci macierzowej Rozwiązać następujący układ równań liniowych: a 1,1 x 1 + a 1,2 x a 1,n 1 x n 1 + a 1,n x n = b 1 a 2,1 x 1 + a 2,2 x a 2,n 1 x n 1 + a 2,n x n = b 2 = a n 1,1 x 1 + a n 1,2 x a n 1,n 1 x n 1 + a n 1,n x n = b n 1 a n,1 x 1 + a n,2 x a n,n 1 x n 1 + a n,n x n = b n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 4/27

5 w postaci macierzowej Problem Układ równań z poprzedniego slajdu można zapisać w postaci macierzowej Ax = b: a 1,1 a 1,2 a 1,n 1 a 1,n a 2,1 a 2,2 a 2,n 1 a 2,n a n 1,1 a n 1,2 a n 1,n 1 a n 1,n a n,1 a n,2 a n,n 1 a n,n x 1 x 2 x n 1 x n = b 1 b 2 b n 1 b n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 5/27

6 Macierz trójkątna górna Macierz trójkątna dolna P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 6/27

7 Macierz trójkątna górna Macierz trójkątna dolna Układ równań można w znacznie prostszy sposób rozwiązać kiedy macierz A ma postać macierzy trójkątnej. Wyróżnić można dwa analogiczne przypadki: macierz trójkątna górna macierz trójkątna dolna P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 7/27

8 Macierz trójkątna górna Macierz trójkątna dolna Macierz trójkątna górna u 1,1 u 1,2 u 1,n 1 u 1,n 0 u 2,2 u 2,n 1 u 2,n 0 0 u n 1,n 1 u n 1,n u n,n x 1 x 2 x n 1 x n = b 1 b 2 b n 1 b n Uwaga! W poniższych wzorach kolejność wyznaczania elementów ma znaczenie! Należy trzymać się podanej kolejności! x n = bn u n,n i=n 1,...,1 x i = b i P n j=i+1 u i,jx j u i,i P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 8/27

9 Macierz trójkątna dolna Macierz trójkątna górna Macierz trójkątna dolna l 1, l 2,1 l 2,2 0 0 l n 1,1 l n 1,2 l n 1,n 1 0 l n,1 l n,2 l n,n 1 l n,n x 1 x 2 x n 1 x n = Uwaga! W poniższych wzorach kolejność wyznaczania elementów ma znaczenie! Należy trzymać się podanej kolejności! x 1 = b 1 l 1,1 i=2,3,...,n x i = b i P i 1 j=1 l i,jx j l i,i b 1 b 2 b n 1 b n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 9/27

10 Cel Przebieg metody Algorytm Rozszerzenie metody P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 10/27

11 Cel Problem Cel Przebieg metody Algorytm Rozszerzenie metody Rzadko układ równań ma postać trójkątną Przekształcenie układu do postaci macierzy trójkątnej! metoda zalgorytmizowana dodawanie i odejmowanie równań mnożenie równań przez stałą P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 11/27

12 Cel Przebieg metody Algorytm Rozszerzenie metody k = 0 dane początkowe A (0) = a (0) 1,1 a (0) 1,2 a (0) 1,n 1 a (0) 1,n a (0) 2,1 a (0) 2,2 a (0) 2,n 1 a (0) 2,n a (0) 3,1 a (0) 3,2 a (0) 3,n 1 a (0) 3,n a (0) n 1,1 a (0) n 1,2 a (0) n 1,n 1 a (0) n 1,n a (0) n,1 a (0) n,2 a (0) n,n 1 a (0) n,n b (0) 1 b (0) 2 b (0) 3 b (0) n 1 b (0) n l i,1 = a i,1 a 1,1, a 1,1 0 P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 12/27

13 k = 1 Problem Cel Przebieg metody Algorytm Rozszerzenie metody A (1) = a (1) 1,1 a (1) 1,2 a (1) 1,n 1 a (1) 1,n 0 a (1) 2,2 a (1) 2,n 1 a (1) 2,n 0 a (1) 3,2 a (1) 3,n 1 a (1) 3,n 0 a (1) n 1,2 a (1) n 1,n 1 a (1) n 1,n 0 a (1) n,2 a (1) n,n 1 a (1) n,n b (1) 1 b (1) 2 b (1) 3 b (1) n 1 b (1) n l i,2 = a i,2 a 2,2, a 2,2 0 P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 13/27

14 k = 2 Problem Cel Przebieg metody Algorytm Rozszerzenie metody A (2) = l i,3 = a i,3 a 3,3, a 3,3 0 a (2) 1,1 a (2) 1,2 a (2) 1,n 1 a (2) 1,n 0 a (2) 2,2 a (2) 2,n 1 a (2) 2,n 0 0 a (2) 3,n 1 a (2) 3,n 0 0 a (2) n 1,n 1 a (2) n 1,n 0 0 a (2) n,n 1 a (2) n,n b (2) 1 b (2) 2 b (2) 3 b (2) n 1 b (2) n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 14/27

15 k = k Problem Cel Przebieg metody Algorytm Rozszerzenie metody A (k) = a (k) 1,1 a (k) 1,2 a (k) 1,k a (k) 1,n 1 0 a (k) 2,2 a (k) 2,k a (k) 2,n 1 a (k) 1,n a (k) 2,n 0 0 a (k) 3,k a (k) 3,n 1 a (k) 3,n 0 0 a (k) k,k a (k) k,n a (k) n 1,n a (k) n,n 1 a (k) k,n a (k) n 1,n a (k) n,n b (k) 1 b (k) 2 b (k) 3 b (k) k b (k) n 1 b (k) n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 15/27

16 k = n Problem Cel Przebieg metody Algorytm Rozszerzenie metody A (n) = a (n) 1,1 a (n) 1,2 a (n) 1,k a (n) 1,n 1 0 a (n) 2,2 a (n) 2,k a (n) 2,n 1 a (n) 1,n a (n) 2,n 0 0 a (n) 3,k a (n) 3,n 1 a (n) 3,n 0 0 a (n) k,k a (n) k,n a (n) n 1,n 1 a (n) k,n a (n) n 1,n a (n) n,n b (n) 1 b (n) 2 b (n) 3 b (n) k b (n) n 1 b (n) n P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 16/27

17 Cel Przebieg metody Algorytm Rozszerzenie metody Algorytm Dla k {1,, n 1}: Dla i {k + 1,, n}: Dla j {k,, n}: b (k+1) i l i,k = a(k) i,k a (k) k,k a (k+1) i,j = b (k) i = a (k) i,j l i,ka (k) k,j l i,k b (k) k Otrzymujemy układ z macierzą trójkątną górną, który potrafimy łatwo rozwiązać. P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 17/27

18 y Problem Cel Przebieg metody Algorytm Rozszerzenie metody nie zawsze działa! Przykład: A = a 1,1 = 0 dzielenie przez 0! Poza tym nie zawsze dobre własności numeryczne (zależy nam na dzieleniu przez jak największą co do modułu liczbę) P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 18/27

19 Cel Przebieg metody Algorytm Rozszerzenie metody Częściowy wybór elementu głównego W każdym kroku wybieramy największy (co do modułu) element w aktualnie przetwarzanej kolumnie 1 Dla ustalenia uwagi w kolumnie k: a p,k = max k i n a i,k a następnie zamieniamy miejscami 2 wiersze k i p w macierzy A i wektorze b 1 w zasadzie tylko w dół od elementu a k,k włącznie na górze są zera 2 to odpowiada zmianie kolejności równań w układzie P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 19/27

20 Cel Przebieg metody Algorytm Rozszerzenie metody Pełny wybór elementu głównego Analogiczny do wyboru częściowego, jednak element główny wybieramy nie tylko w przetwarzanej kolumnie, ale w całym fragmencie macierzy poniżej i na prawo włącznie od a k,k : a p,r = max k i n k j n a i,j a następnie zamieniami wiersze k i p w macierzy A i wektorze b, oraz kolumny 3 k i r w macierzy A. 3 zamiana kolumn w macierzy zmienia również kolejność elementów wektora x i zmiany te trzeba zapamiętać w dalszych obliczeniach! P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 20/27

21 Podstawy teoretyczne Sens metody P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 21/27

22 Podstawy teoretyczne Sens metody Każdy krok rozkładu Gaussa można przedstawić jako iloczyn macierzy: A (k+1) = L (k) A (k) Macierz L (k) ma postać: L (k) = l i,k 0 0 l n,k 0 1 P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 22/27

23 Podstawy teoretyczne Sens metody Oznaczmy U A (n). Wówczas mamy: Wyznaczając zatem A mamy: U = L (n) A (n 1) = = L (n) L (n 1) A (n 2) = = L (n) L (n 1) L (1) A A = (L (1) ) 1 (L (n 1) ) 1 U P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 23/27

24 Podstawy teoretyczne Sens metody Oznaczmy: L = (L (1) ) 1 (L (n 1) ) 1 Odwrócenie macierzy L (i) to zmiana znaku elementów l i,j na przeciwny. Zatem L = l i,1 l i,k 1 0 l n,1 l n,k l n,k+1 1 Wówczas: A = LU P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 24/27

25 Podstawy teoretyczne Sens metody A = LU Wówczas układ równań można przedstawić następująco: Ax = b LUx = b Rozwiązując pomocniczy układ równań (trójkątny!) wyznaczamy wektor y: Ly = b A na jego podstawie rozwiązując uproszczony (również trójkątny!) układ dostajemy x: Ux = y P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 25/27

26 Po co tak się bawić? Podstawy teoretyczne Sens metody Złożoność obliczeniowa: Doprowadzenie do macierzy trójkątnej O(n 3 ) Rozwiązanie układu trójkątnego O(n 2 ) Doprowadzenie do macierzy trójkątnej O(n 3 ) Odwrócenie macierzy L O(n 2 ) Rozwiązanie układu trójkątnego Ly = b O(n 2 ) Rozwiązanie układu trójkątnego Ux = y O(n 2 ) Dla rozwiązywania pojedynczego układu nie ma sensu! W przypadku gdy dla serii układów równań zmienia się tylko wektor b, wykonujemy tylko dwa ostatnie kroki, zatem rozwiązując dwa, lub więcej układów zyskujemy! P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 26/27

27 Dziękuję za uwagę P. Modliński, GiK PW Rozw. ukł. równ. lin. metody dokładne 27/27

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań:

Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań: Przykład 2 układ o rozwiązaniu z parametrami Rozwiążemy następujący układ równań: Po zapisaniu układu w postaci macierzy rozszerzonej będziemy dążyć do uzyskania macierzy jednostkowej po lewej stronie

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra Wstęp do metod numerycznych Faktoryzacja macierzy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów równań z ta sama lewa strona,

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Metoda eliminacji Gaussa

Metoda eliminacji Gaussa Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY Dodawanie i odejmowanie macierzy jest możliwe tylko dla dwóch macierzy o takich samych wymiarach! Wynikiem tych operacji jest macierz o takich samych

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p. Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25 MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s]. Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s

Bardziej szczegółowo

10. Metody obliczeniowe najmniejszych kwadratów

10. Metody obliczeniowe najmniejszych kwadratów 10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo