6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać się z użyecznymi meodami rozwiązywania równań rekurencyjnych. Zagadnienie o można przedsawić w formie nasępującego problemu: Proszę znaleźć wyrażenie na wypadkową sprawność układu szeregowo połączonych silników cieplnych. Dany silnik w szeregu pobiera ciepło oddane przez jednego sąsiada, a wydzielone ciepło oddaje nasępnemu sąsiadowi. Wszyskie silniki pracują z jednakową sprawnością, równą η. Zadanie o, na pierwszy rzu oka, może sprawiać wrażenie dość oczywisego. Moglibyśmy pomyśleć, że sprawności sumują się w jakiś znany nam sposób, np. jak w równoległym połączeniu rezysorów. ic jednak bardziej mylnego. Reguła dodawania sprawności silników okazuje się mieć mniej oczywisą posać, sprawiającą, że znalezienie wyrażenia na wypadkową sprawność układu nie jes zadaniem prosym. Rozwiązanie ego problemu nie wymaga jednak zaawansowanej maemayki ylko rochę spryu i pomysłowości. Dlaego uważam, że może być ono ciekawą rozrywką inelekualną dla ambinych licealisów oraz sudenów pierwszych la na kierunkach ścisłych. Jeśli wzbudziłem Twoje zaineresowanie i chcesz podjąć wyzwanie, zachęcam do zmierzenia się z zadaniem. Jeśli sprawi ci ono rudność, odłóż je na kilka dni, po czym spróbuj zaaakować je jeszcze raz. Po zakończonych zmaganiach zapraszam ponownie do ego arykułu. Poniżej będziesz mógł/mogła skonfronować swój wynik z moimi obliczeniami oraz dowiedzieć się co nieco o równaniach rekurencyjnych. Powodzenia! I. Rozwiązanie Zanim podejmiemy wyzwanie rozwiązania pełnego problemu silników cieplnych waro wcześniej rozważyć przypadek połączenia szeregowego dwóch silników cieplnych, jednego o sprawności η, a drugiego o sprawności η. iech Q oznacza ciepło pobrane z grzejnicy przez pierwszy silnik, a Q o ciepło oddane przez en silnik chłodnicy. Praca wykonana przez czynnik roboczy pierwszego silnika wynosi W. Ponieważ energia wewnęrzna w pełnym cyklu nie zmienia się, na podsawie pierwszej zasady ermodynamiki, orzymujemy związek: Q + Q + W =, przy czym W i Q są ujemne. Sprawność pierwszego silnika
FOTO 33, Lao 6 7 W definiujemy jako, czyli sosunek wykonanej przez en silnik pracy do Q W dosarczonego ciepła. Analogicznie, sprawność drugiego silnika. Q 3 Przez Q 3 oznaczyliśmy uaj ciepło pobrane przez en silnik z grzejnicy. Ponieważ grzejnica silnika jes jednocześnie chłodnicą silnika, zachodzi związek Q 3 = Q. Ponado, przez W oznaczyliśmy pracę wykonaną podczas pełnego cyklu przez drugi silnik. Wypadkową sprawność rozważanego szeregowego układu możemy więc zapisać jako: W W Q Q 3, () Q Q gdzie wykorzysaliśmy wprowadzone wcześniej definicje sprawności η i η. Ponieważ Q 3 = Q = Q + W, dosajemy W, Q () a sąd, wykorzysując ponownie definicję η, oraz fak, że dla ujemnego W, zachodzi W = W, orzymujemy szukane wyrażenie:. (3) Sprawność układu szeregowego dwóch silników cieplnych wyraża się jako suma ich sprawności pomniejszona o iloczyn ych sprawności. Prawda, że mało inuicyjne? Orzymany wzór (3) chcielibyśmy eraz wykorzysać do obliczenia sprawności silników o zadanej warości, połączonych szeregowo. Oznaczmy aką sprawność przez η. Znając regułę sumowania sprawności (3) możemy eraz kolejno dodawać do siebie orzymywane sprawności, konsruując układ zawierający coraz o więcej elemenów. Jeśli każdy z silników ma sprawność η o oczywiście η = η. Wykorzysując nasępnie wzór (3), dla dwóch idenycznych silników, dosajemy. Chcąc orzymać wyrażenie na η 3, do układu o sprawności η, sosując ponownie równanie (3), dodajemy silnik z η = η, 3 dosając 3 3 3. I ak dalej, i ak dalej. Szukamy jednak czegoś więcej, chcielibyśmy dysponować funkcją, kóra dla danego da nam bezpośrednio szukane wyrażenie. Jedną z meod na znalezienie jej posaci jes zgadywanie. Wypiszmy sobie na przykład pięć pierwszych wyrazów i spróbujmy znaleźć szukane wyrażenie. Dla wygody i przejrzysości oznaczmy, a ponieważ η jes funkcją, będziemy sosować zapis η (). Orzymane wyrażenia zebrano w abelce:
8 FOTO 33, Lao 6 ( ) 3 3 3 3 4 3 4 4 6 4 5 5 5 3 4 5 Można z niej odczyać, że dla danego funkcja η () ma posać wielomianu sopnia. Co więcej, można zauważyć, że współczynniki przy poęgach sumują się do jedynki. Możemy więc wywnioskować, że η () =. Co jes zgodne z inuicją szeregowe połączenie silników idealnych jes również silnikiem idealnym. Oprócz ego, na podsawie powyższej abelki można swierdzić, że współczynnik przy najniższej poędze wynosi. Powyższe obserwacje mogą nam pomóc odgadnąć ogólne wyrażenie na η (). Co jednak mamy zrobić, gdy meoda zgadywania nie doprowadzi nas do oczekiwanego rezulau? Zauważmy, że zamias dodawać kolejne elemeny układu i dla każdej nowej konfiguracji obliczać wypadkową sprawność, możemy posawić sprawę rochę inaczej. Rozważny mianowicie układ silników o wypadkowej sprawności ( ) i połączmy go z silnikiem o sprawności. Korzysając ze wzoru (3) możemy sąd wyprowadzić wyrażenie na sprawność układu + silników znając sprawność układu silników: ( ) ( ) ( ) ( ) ( ), (4) razem z ak zwanym warunkiem począkowym η () =. Wyrażenie (4) jes przykładem równania rekurencyjnego, a dokładniej, jes o równanie rekurencyjne liniowe i niejednorodne. Liniowość odzwierciedla u fak, że prawa srona równania (4) nie zawiera poęg η () różnych od i. iejednorodność wskazuje naomias na obecność sałego członu. Isnieje wiele sposobów rozwiązywania ego ypu równań, z kórych u chciałbym przedyskuować dwa: meodę czynnika sumacyjnego oraz meodę funkcji worzących. arzędzia e są bardzo przydane przy rozwiązywaniu wielu problemów. Korzysając z dyskuowanego zagadnienia będziemy mogli wyłumaczyć zasadę ich działania. II. Meoda czynnika sumacyjnego Rozważmy pozornie niezwiązany problem. Mianowicie, obliczenie sumy S a a a a n n, gdzie a n są elemenami pewnego ciągu liczbowego. Isoną, z naszego punku widzenia, obserwacją jes o, że sumę S możemy przedsawić w posaci równania rekurencyjnego:
FOTO 33, Lao 6 9 S S a, (5) razem z warunkiem począkowym S = a. Sąd, S = S + a = a + a, a nasępnie S 3 = S + a 3 = a + a + a 3, i ak dalej, aż do warości, kórej porzebujemy. Porafiąc więc obliczyć sumę S, co niekiedy nie jes zadaniem rudnym, możemy znaleźć rozwiązanie równania (5). Równanie (4), kóre chcemy rozwiązać, różni się od równania (5). Są one jednak na yle podobne, że można je z sobą powiązać. Mianowicie, zasanówmy się, co należy zrobić żeby równanie (4) przekszałcić do posaci (5)? Po chwili zasanowienia, można zauważyć, że waro spróbować podzielić obusronnie równanie (4) przez czynnik ( ) +. Dosajemy wedy równanie ( ) ( ) ( ), w kórym pozbyliśmy się członu ( ) mnożącego η w równaniu (4). Z równań (5) i (6) można odczyać, że S oraz a. Funkcja ( ) ( ), kóra pozwoliła przekszałcić równanie (4) do posaci (5), nosi nazwę czynnika ( ) sumacyjnego. Wykorzysując orzymane wyrażenie na współczynniki a n, możemy zapisać n n n Osania suma jes przykładem n S a n n ( ). sumy ciągu geomerycznego, oznaczmy ją przez n (6) n. Dodając i odej- mując od ej sumy wyraz, możemy zapisać równanie, kóre, po rozwiązaniu, prowadzi do wyrażenia. Korzysając z ego wyniku, dla, dosajemy S n. (7) n ( ) Wykorzysując, znaleziony wcześniej związek pomiędzy S a η, orzymujemy poszukiwany wynik: ( ) ( ) S ( ). (8)
FOTO 33, Lao 6 III. Meoda funkcji worzących Przejdźmy eraz do alernaywnego sposobu znalezienia wyrażenia na η (), wykorzysując meodę funkcji worzących. W ym celu, zdefiniujmy nasępującą funkcję: f ( ) ( ), (9) gdzie <. Wyłączmy z powyższej sumy pierwszy wyraz i przemianujmy wskaźniki w pozosałej sumie: ( ) ( ) ( ) ( ). f () Współczynniki η + () możemy, w oparciu o równanie rekurencyjne (4), wyrazić za pomocą współczynników η (), co pozwala zapisać wyrażenie na funkcję f () w nasępującej posaci: f ( ) ( ) ( ) ( ) ( ) ( ) f ( ), () gdzie ponownie skorzysaliśmy z definicji (9). Pozosaje nam jeszcze suma. Ale o jes po prosu suma nieskończonego ciągu geomerycznego, kórej warość możemy z ławością obliczyć. Oznaczmy. Zapiszmy Σ = + + 3 + = + Σ, co wynika z faku, że suma a jes nieskończona. Rozwiązanie orzymanego równania Σ = + Σ ma posać. Alernaywnie, wynik en można uzyskać wykorzysując wcześniej znalezione wyraże- nie i rozważając granicę. Sąd, po podsawieniu obliczonej sumy do równania (), dosajemy równanie kóre, po rozwiązaniu na f (), można zapisać jako f ( ) ( ) f ( ), () f( ). ( )( ) (3)
FOTO 33, Lao 6 Ławo zauważyć, że powyższą funkcję można zapisać przez sumę ułamków prosych: f( ). (4) ( ) Korzysając naomias z reprezenacji funkcji y w posaci szeregu Taylora możemy funkcję f () wyrazić jako y, y (5) (6) f ( ) ( ) ( ), gdzie wyraz = nauralnie nie daje wkładu do powyższej sumy. Ponieważ równania (9) i (6) są równoważnymi wyrażeniami na funkcję f (), porównując ich prawe srony dochodzimy do wniosku, że IV. Wnioski ( ) ( ). (7) Powracając do oryginalnych oznaczeń = η, obydwie zasosowane meody pozwalają nam wyprowadzić szukaną wypadkową sprawność połączonych szeregowo silników cieplnych, każdy o sprawności η : ( ). (8) Waro zauważyć, że ponieważ η <, o w granicy, wypadkowa sprawność szeregowego układu połączonych silników będzie dążyła do jedności (lim ), czyli zwiększając będziemy zbliżać się do przypadku silnika o idealnej sprawności. ie jes o wynik sprzeczny z oczekiwaniami, kiedy rozważymy szczególny przypadek silnika Carnoa. W silniku Carnoa zarówno pobieranie jak i oddawanie ciepła przez subsancję roboczą nasępuje przy sałej emperaurze procesy wymiany ciepła przebiegają izoermicznie. iech w akim przypadku, pierwsza grzejnica w układzie ma emperaurę T, pierwsze chłodnica, kóra jes zarazem grzejnicą dla silnika, ma emperaurę T i ak dalej, aż do, zamykającej szereg, chłodnicy o emperaurze T. Schemaycznie, syuację ę przedsawiono na rysunku poniżej.
FOTO 33, Lao 6 W przypadku szeregu silników Carnoa, sprawność każdego z silników można wyrazić poprzez sosunek emperaury chłodnicy względem grzejnicy: T T T (9). T T T Ponieważ założyliśmy równość sprawności poszczególnych silników, dla każdego z nich sosunek emperaury chłodnicy względem emperaury grzejnicy będzie wyrażał się jako: T. () T Sąd ławo dojść do wniosku, że sosunek emperaury osaniej chłodnicy do emperaury pierwszej grzejnicy dany jes przez wyrażenie: T T ( ), () co po podsawieniu do równania (8) daje nam nasępujące wyrażenie na sprawność szeregowego układu silników Carnoa: T. () T Orzymana wypadkowa sprawność wyraża się więc idenycznie jak sprawność pojedynczego silnika Carnoa o emperaurze grzejnicy T i emperaurze chłodnicy T. a podsawie równania () widzimy, że przy usalonym T emperaura osaniej chłodnicy maleje w posępie geomerycznym wraz ze wzrosem. W granicy orzymujemy więc T, co przekłada się na η.