Wykład Temperatura termodynamiczna 6.4 Nierówno

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład Temperatura termodynamiczna 6.4 Nierówno"

Transkrypt

1 ykład emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu doskonałego 6.9 Energia dostępna i niedostępna 6.0 II zasada termodynamiki dla układu otwartego Reinhard Kulessa

2 Załóżmy, że mamy do dyspozycji dwie dwie odwracalne maszyny cieplne pracujące cyklicznie: A B A B A B ydajność cieplna η t cyklicznej maszyny cieplnej jest zdefiniowana następująco: Reinhard Kulessa

3 energia użyteczna uzyskana praca η t = energia włożona = zużyte ciepło. (6.) rozważanym przypadku będzie to: η (6.3) t = Cykle A i B mogą być skonstruowane różnie. Załóżmy, że wydajność cyklu A jest większa od wydajności cyklu B, oraz że A = B tedy A > B i A < B. Ponieważ obydwie maszyny są odwracalne, maszynę B można odwrócić i połączyć z maszyną A. Uzyskujemy wtedy sytuację jaka jest przedstawiona na następnym rysunku. Reinhard Kulessa 3

4 A B A + B = A - B A B B A idzimy, że otrzymalibyśmy cykl, w którym A - B = B A, jednak narusza sformułowanie Kelvina-Plancka II zasady termodynamiki. Czyli założenie, że η A > η B było niesłuszne. Reinhard Kulessa 4

5 Można więc stwierdzić, że: wszystkie odwracalne maszyny cieplne pracujące pomiędzy tymi samymi temperaturami, mają tą samą wydajność. η t = = = (6.4) Możemy również wyciągnąć wniosek, że / jest funkcją tych temperatur. Mielibyśmy więc zależność: Można pokazać, że, Gdzie F jest pewną nową funkcją. = f (, ) (6.5) F ( ) = (6.6) F ( ) Reinhard Kulessa 5

6 Zależność (6.6) może być spełniona przez wiele funkcji F. Kelvin zaproponował, aby przyjąć najprostszą postać tej funkcji, czyli = (6.7) i równocześnie uznać to równanie za definicję bezwzględnej temperatury termodynamicznej. ydajność odwracalnej maszyny cieplnej pracującej pomiędzy dwoma zbiornikami ciepła o temperaturach N niższej i wyższej, jest dana przez wyrażenie; η t = N (6.8) Reinhard Kulessa 6

7 Maszyna odwracalna Maszyna cykliczna 6.4 Nierówność Clausiusa Z d Z Z C d d Z Rozważmy urządzenie, które pobiera ilość ciepła d Z ze zbiornika o stałej temperaturze Z i transportuje to ciepło do odwracalnej maszyny Z produkującej pracę w ilości d Z. d C Ciepło odrzucone przez maszynę Z zasila cykliczną maszynę C produkującą pracę w ilości d C. Rozważając obydwie maszyny jako jeden system, całkowita praca wykonana jest równa: d =d Z + d C oparciu o wydajność odwracalnego silnika Z, możemy napisać: Reinhard Kulessa 7

8 czyli d' Z d' C = d' Z = d' ( Z Z ) = d' ( Z d' = d' ( + ) = ) d' Równanie to dla pełnego cyklu przyjmuje postać Reinhard Kulessa 8 Z (6.9) d ' d ' = Z. (6.0) Urządzenie pokazane na rysunku nie może wykonać pracy, gdyż proces jest sprzeczny ze sformułowaniem Kelvina - Plancka II zasady termodynamiki. Urządzenie to może pracować tylko z cyklicznym wkładem pracy i cyklicznym przekazywaniem ciepła do zbiornika.

9 Matematycznie oznacza to d ' 0 (6.) gdzie d jest wynikową pracą. Można również napisać, że d ' (6.) 0 a ostatnia nierówność jest nazywana nierównością Clausiusa. Do tej pory nie braliśmy pod uwagę faktu, że silnik C może być odwracalny. Załóżmy, że tak jest, oraz, że d ' < 0 Jeżeli C jest silnikiem odwracalnym, to otrzymujemy, Reinhard Kulessa 9

10 d' > 0 Jest to niemożliwe, gdyż stworzylibyśmy perpetuum mobile II rodzaju. ynika stąd, że dla procesów odwracalnych w równaniu (6.) musi obowiązywać równość, czyli d' ( ) odwr = 0 (6.3) 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii równaniu (6.3) wyrażenie pod całką musi być różniczką zupełną pewnej funkcji stanu. Możemy więc napisać d ' ds = ( ) (6.4) odwr Reinhard Kulessa 0

11 Funkcję S w ostatnim równaniu nazywamy entropią. Równanie to przedstawia makroskopową definicję entropii. Entropia jest zdefiniowana tylko dla procesów odwracalnych, a zmianę wartości entropii można policzyć z zależności; d' (6.5) S = S S = ( ) odwr Rozważmy dwa dowolne punkty stanu naszego układu. Proces Nieodwracalny Cykl=N+O Proces Odwracalny Zgodnie z równaniem (6.) d' d' < 0 Reinhard Kulessa d' = N + Użyliśmy znaku nierówności, gdyż cały cykl jest nieodwracalny. O

12 Reinhard Kulessa iedząc, że ' S S d O = Możemy poprzednie równanie napisać jako; > < + ' lub 0 ' d S S S S d N N ogólnym przypadku możemy napisać; ' d S S (6.6) Znak nierówności jest ważny dla procesów nieodwracalnych, a znak równości dla odwracalnych

13 Dla procesu adiabatycznego d = 0, czyli S S 0. Jeżeli będzie to proces adiabatyczny odwracalny, zmiana entropii będzie równa zero. Proces ten nazywamy procesem izentropowym. Można powiedzieć, że żaden proces rzeczywisty nie jest odwracalny. Gdy proces jest nieodwracalny i adiabatyczny, entropia musi wzrastać. Dla układu izolowanego, 0. (6.7) S izol oparciu o równanie (6.4) możemy znaleźć, że dla odwracalnego procesu izotermicznego odwr izoterm = S (6.8) układzie współrzędnych i S możemy przedstawić adiabatyczny proces odwracalny i nieodwracalny.. Reinhard Kulessa 3

14 Pr. odwracalny adiab. Pr. nieodwr. adiab. Im większy jest wzrost entropii, tym bardziej proces jest nieodwracalny. Powodem mniejszej lub większej nieodwracalności procesów są wszelkiego rodzaju tarcia, tak samo jak mieszanie warzechą w zupie. S S nieodwr.- adiab. 6.6 Entropia dla czystej substancji Pokazaliśmy, że entropia jest własnością układu termodynamicznego i to własnością ekstensywną. Jest taką samą własnością jak energia całkowita, wewnętrzna i entalpia. Można ją liczyć z entropii właściwej. Reinhard Kulessa 4

15 S = m s (6.9) Dla czystych substancji entropia może być stablicowana tak jak entalpia, objętość właściwa, czy inna własność termodynamiczna. Podaje się dwojakiego rodzaju wykresy, zależność temperatury od entropii, czy zależność entalpii od entropii. a ostatnia zależność nazywa się wykresem Moliera. 6.7 Entropia dla gazu doskonałego Opierając się na już wyprowadzonych zależnościach, du dh = = c c V p d d Oraz faktu, że dla procesu odwracalnego d =ds i przyjmując, że gaz idealny jest cieczą ściśliwą możemy napisać: Reinhard Kulessa 5

16 czyli d ' = du + p dv = ds du p ds = + dv. Korzystając z równania gazu doskonałego, mamy p R = v czyli d ds cv + dv R v =. Dla c V = const otrzymujemy na zmianę entropii pomiędzy dwoma stanami gazu idealnego wyrażenie s V + ln s = c ln R (6.0) v Reinhard Kulessa 6 v

17 Równanie to można również napisać inaczej w oparciu o zależności d ' = dh vdp = ds d dp, ds = c p R p jako s p ln s = c ln R (6.) p p Zarówno w równaniu (6.0) i (6.) zmiana entropii jest liczona między dwoma stanami układu termodynamicznego (p,v, ) i (p,v, ). Ponieważ entropia jest funkcja stanu, jej zmiana nie powinna zależeć od procesu. Reinhard Kulessa 7

18 6.8 Cykl Carnota Stwierdziliśmy do tej pory, że wydajności wszystkich cyklów odwracalnych pracujących pomiędzy tymi samymi temperaturami są takie same i dane równaniem (6.8). Przykładem takiego cyklu jest cykl Carnota. p A =const B D N =const N C N N V S S Reinhard Kulessa 8

19 . Odwracalna przemiana izotermiczna z pobraniem ciepła. Odwracalna przemiana adiabatyczna z pracą wykonana przez układ 3. Odwracalna przemiana izotermiczna z oddaniem ciepła 4. Odwracalna przemiana adiabatyczna z praca wykonana na układzie oparciu o diagram -S znajdujemy, = S N = Praca uzyskana jest równa: netto = N =( N S Reinhard Kulessa 9 N ) S Na diagramie -S praca wykonana jest równa powierzchni prostokąta.

20 Zgodnie z podaną we wzorze (6.4) definicją wydajności maszyny cieplnej, otrzymujemy na wydajność cyklu Carnota wartość η t netto N = = ( ) S S = N (6.) Możemy podać ogólne stwierdzenie, że dla każdego cyklu Odwracalnego wypadkowa praca jest równa powierzchni zakreślonej na diagramie -S. 6.9 Energia dostępna i niedostępna Otrzymaliśmy wyrażenie na wydajność cyklicznej maszyny cieplnej operującej w oparciu o dwa zbiorniki ciepła o różnych temperaturach. ydajność ta zależy od najniższej dostępnej temperatury 0, która normalnie jest średnią temperaturą atmosferyczną. Reinhard Kulessa 0

21 Praca jaką możemy uzyskać pobierając ciepło d ze zbiornika o temperaturze jest równa: 0 d ' = ( ) d ' (6.3) Energią dostępną dla danego ukłądu nazywamy część ciepła dodaną do układu, która może zostać zamieniona w pracę przez szereg odwracalnych maszyn pracujących pomiędzy temperaturą układu a 0. max 0 = ( ) d' (6.4) Energia niedostępna jest równa różnicy pomiędzy całkowitym ciepłem dodanym a uzyskaną pracą. Dla przejścia ze stanu do zakładając, że ciepło jest oddane w procesie odwracalnej maszyny, zachodzi; Reinhard Kulessa

22 max max 0 = ( ) d' odwr = = 0 ( S S ) 0 ds Praca niedostępna wynosi więc: nied = ( S ) (6.5) 0 S 6.0 II zasada termodynamiki dla układu otwartego Omawialiśmy I zasadę termodynamiki dla układów otwartych, oraz poznaliśmy metody obliczania bilansów energii i ciepła. Zajmijmy się analizą układu otwartego zawartego w pewnej objętości kontrolnej z punktu widzenia II zasady termodynamiki. Reinhard Kulessa

23 d' dt σ Objętość kontrolna d' dt zewn wlot-input wylot-exit m i e i h i s i m e e e h e s e Ponieważ entropia jest funkcją stanu może być transportowana tak jak entalpia czy energia wewnętrzna.ciepło i praca są dodawane do granicy objętości kontrolnej. Reinhard Kulessa 3

24 Entropia może wnikać do objętości kontrolnej przez transport masy lub ciepła. Entropia wpływająca z transferem ciepła może przenikać do objętości kontrolnej w różnych miejscach o różnej temperaturze i możemy ją zapisać jako: ds dt = pow i d ' dt i (6.6) i odpowiada temperaturze powierzchni dla ciepła i. Równocześnie wzrost entropii może następować na wskutek pewnych procesów nieodwracalnych. Może istnieć wiele strumieni wpływających i wypływających do objętości kontrolnej. Dla krótkiego przedziału czasu produkcja entropii będzie wynosiła; ds dt wytw = out mese in misi pow i d' dt i + ds dt σ (6.7) Reinhard Kulessa 4

25 Zgodnie z II zasadą termodynamiki ds. 0 dt Pamiętamy że znak = odnosi się dla procesów odwracalnych, a znak > dla procesów nieodwracalnych. Dla stałego strumienia masy i stacjonarnego stanu naszego układu zachodzi ds, wtedy = 0 oraz m i = m e dt out mese σ in misi σ i wytw d' dt (6.8) Dla procesu adiabatycznego i stałego strumienia masy s s (6.9) e i. Reinhard Kulessa 5

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem: WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Bardziej szczegółowo

Ciepła tworzenia i spalania (3)

Ciepła tworzenia i spalania (3) Ciepła tworzenia i spalania (3) Standardowa entalpia tworzenia jest standardową entalpią związku 0 0 H = H Dla pierwiastków: Dla związków: H H 98 tw,98 0 tw, = C p ( ) d 98 0 0 tw, = Htw,98 + C p ( ) 98

Bardziej szczegółowo

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika:

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Zamiana ciepła na pracę przez cyklicznie działającą maszynę cieplną jest możliwa tylko przy wykorzystaniu dwóch zbiorników ciepła o różnych

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny cieplne i II zasada termodynamiki Maszyny cieplne, chłodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamiczna definicja II zasada termodynamiki i entropia Cykle termodynamiczne.

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Energetyka odnawialna i nieodnawialna

Energetyka odnawialna i nieodnawialna Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077 . Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

Wykład 4. II Zasada Termodynamiki

Wykład 4. II Zasada Termodynamiki Wykład 4 II Zasada Termodynamiki Ogólne sformułowanie: istnienie strzałki czasu Pojęcie entropii i temperatury absolutnej Ćwiczenia: Formy różniczkowe Pfaffa 1 I sza Zasada Termodynamiki: I-sza zasada

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

Aerodynamika I Podstawy nielepkich przepływów ściśliwych

Aerodynamika I Podstawy nielepkich przepływów ściśliwych Aerodynamika I Podstawy nielepkich przepływów ściśliwych żródło:wikipedia.org Podstawy dynamiki gazów Gaz idealny Zbiór chaotycznie poruszających się cząsteczek w którym cząsteczki oddziałują na siebie

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną: Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch

Bardziej szczegółowo

BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI

BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI 2.1. PODSTAWY TEORETYCZNE Sporządzenie bilansu energetycznego układu polega na określeniu ilości energii doprowadzonej, odprowadzonej oraz przyrostu energii

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:

Bardziej szczegółowo

BADANIA SPRĘŻARKI TŁOKOWEJ

BADANIA SPRĘŻARKI TŁOKOWEJ Opracował: dr inż. Zdzisław Nagórski Materiały pomocnicze do ćwiczenia laboratoryjnego pt.: A. Wiadomości podstawowe i uzupełniające: BADANIA SPRĘŻARKI TŁOKOWEJ Proces sprężania - w zastosowaniach technicznych

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Druga zasada termodynamiki. Rys Przemiana zamknięta, czyli obieg

Druga zasada termodynamiki. Rys Przemiana zamknięta, czyli obieg 1/7 6. DRUGA ZASADA TERMODYNAMIKI 6.1. Obiegi Częstokroć mamy do czynienia z przemianami podczas których układ po wyjściu ze stanu początkowego i po przejściu szeregu zmian powraca do stanu pierwotnego.

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

Druga zasada termodynamiki.

Druga zasada termodynamiki. Wykład z fizyki, Piotr Posmykiewicz 79 W Y K Ł A D XIV Druga zasada termodynamiki. Często naszym zadaniem jest zastosowanie zasady zachowania energii. Jednak, zgodnie z pierwszą zasadą termodynamiki, energia

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2012/13 1 Ziarnista budowa materii Liczba Avogadro 2 Temperatura termodynamiczna 3 Sposoby

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura

Bardziej szczegółowo

Janusz Walczak, Termodynamika techniczna

Janusz Walczak, Termodynamika techniczna Pr z e d m o wa Termodynamika jest nauką zajmującą się przemianami różnych postaci energii. W podręczniku, który przekazujemy Państwu, ograniczyliśmy się do opisu przemian energii zachodzących w różnych

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Wykład z Termodynamiki II semestr r. ak. 2009/2010

Wykład z Termodynamiki II semestr r. ak. 2009/2010 Wykład z Termodynamiki II semestr r. ak. 2009/2010 Literatura do wykładu 1. F. Reif - "Fizyka Statystyczna- PWN 1971. 2. K. Zalewski, - "Wykłady z termodynamiki fenomenologicznej i statystycznej- PWN 1978.

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

ZADANIA Z FIZYKI - TERMODYNAMIKA

ZADANIA Z FIZYKI - TERMODYNAMIKA ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

3 Potencjały termodynamiczne i transformacja Legendre a

3 Potencjały termodynamiczne i transformacja Legendre a 3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1

Bardziej szczegółowo

Termodynamika (ZNK414), studia niestacjonarne. Wykład 1.

Termodynamika (ZNK414), studia niestacjonarne. Wykład 1. . O czym mówi termodynamika? Termodynamika (ZNK44), studia niestacjonarne Wykład. - niektóre procesy zachodzą spontanicznie tylko w jednym kierunku (nieodwracalność) - praca jest bardziej wartościowa niż

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Rodzaje pracy mechanicznej

Rodzaje pracy mechanicznej Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo