WRAŻLIWOŚĆ NA IMERFEKCJE PRĘTÓW CIENKOŚCIENNYCH Z POŁĄCZENIAMI PODATNYMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "WRAŻLIWOŚĆ NA IMERFEKCJE PRĘTÓW CIENKOŚCIENNYCH Z POŁĄCZENIAMI PODATNYMI"

Transkrypt

1 Dr inż. Lezek CHODOR Dr inż. Roman BIJA Politechnika Świętokrzyka, atedra Budownictwa etalowego i eorii ontrukcji WRAŻLIWOŚĆ NA IRFCJ PRĘÓW CINOŚCINNCH Z POŁĄCZNIAI PODANI. Wprowadzenie Dominującą technologią budowy lekkich kontrukcji budowlanych jet calanie ich ze talowych prętów o przekroju cienkościennym za pomocą połączeń śrubowych. W niniejzej pracy przedtawimy teoretyczne podtawy analizy wrażliwości nośności takich kontrukcji na imperfekcje geometryczne: ) wtępne wygięcia i kręcenia prętów między węzłami, ) parametry modelu połączeń półztywnych prętów w węzłach, ) błędy montażowe połączeń prętów. W analizie przyjęto model nieliniowego geometrycznie elementu cienkościennego pręta o przekroju otwartym oraz nieliniowy model połączenia odkztałcalnego. Podatne połączenia prętów mają itotny wpływ na zachowanie kontrukcji talowych. Rozrzut wyników numerycznych oraz doświadczalnych badań podatności połączeń odkztałcalnych wkazuje, że ich analiza uwzględniająca tylko jeden parametr: wartość średnią jet niepełna i może prowadzić do błędnych wnioków. W literaturze [, i in.] wkazuje ię bowiem, że rozrzuty ztywności połączenia danego typu mogą dochodzić do 60%, a więc znacznie przekraczać zmienności innych parametrów kontrukcji. Przetawione elementy modelu teoretycznego mogą być podtawą budowy procedur i programów numerycznych obliczania wrażliwości. e z kolei mogą być zatoowane w procedurach obliczania niezawodności kontrukcji za pomocą Stochatycznej etody lementów Skończonych.

2 . odel elementów ytemu kontrukcyjnego z imperfekcjami. odel pręta cienkościennego z imperfekcjami W modelu pręta cienkościennego uwzględnijmy imperfekcje geometryczne oi pręta w funkcji względnej długości ξ ( x / l) [0,] : ( ξ ), ( ξ ), ( ξ )] [wtępne kręcenie przekroju [ wokół oi pręta x, wtępne wygięcia pręta na kierunku oi x, wygięcie na kierunku oi x ] (ry. ). Ry. Przyjmijmy natępujące założenia: ) Założenie geometryczne: a) małe odkztałcenia, duże przemiezczenia liniowe i kąty kręcenia, umiarkowane obroty przekroju od zginania (nieliniowości drugiego rzędu), b) hipotezę kinematyczną Bernoulliego dla zginania i Właowa dla paczenia. ) Założenie fizyczne: materiał prężyto-platyczny HH z izotropowym wzmocnieniem liniowym. ożna pokazać [5], że założenie geometryczne prowadzi do natępujących wzorów na kładowe tenora odkztałcenia Greena-Lagrange a dowolnego punktu P przekroju pręta (ry.): gdzie ( ) d ( ) x kˆ + x kˆ ωkˆ + k k ( ) 0 x + x γ ˆ, ε ε , rk0 ( + e ) dξ, ω - wpółrzędna wycinkowa, r odległość od linii środowej przekroju, + eu ε 0, + e ( ) + ( ) e, ( U ) + ( U ) (a,b) 0 0 e U u 0 + (a-c), U 0 i i + u0i k k ˆ 0i i 0 i (i,,), φ + φ + e k (a-c)

3 k φ, k +, (4a,b) 0 + U 0U 0 U 0U 0 k k 0 U 0 inφ U 0 coφ, k in co 0 U 0 coφ + U 0 inφ, k co + in, (5a,b). (6a,b) Analiza przeprowadzona w [6] wkazuje, że wrażliwość nośności kontrukcji należy zacować z uwzględnieniem platycznych właności materiału. Założenie platyczności można opiać tandardowymi zależnościami przyrotowymi pomiędzy przyrotem Ry. odkztałcenia ε { ε, γ } i naprężenia { σ, τ} σ [8]: ep σ ε, ep e p, (7a,b) e 0 p σ στg,, α σ H e + σ + 9τ G 0 G α στg 9τ G (8a-c) gdzie : σ σ + τ e, σ - całkowite naprężenie normalne oraz tyczne τ, H - parametr wzmocnienia. Wykre rozciągania materiału pozwala określić moduł ounga, parametr wzmocnienia H /( + ), a po uwzględnieniu odkztałcalności poprzecznej również moduł irchoffa G. W analizie należy również uwzględnić naprężenia reztkowe walcownicze w przekroju, np. według rozkładu pokazanego na ry.. ają one itotny wpływ na pracę prętów cienkościennych [7,8] w zakreie platycznym i ą naprężeniami wyjściowymi w iterowaniu warunku (7). [ u ] ( i) ( j) [,, V,, V,, B, N,, V,, V,, B ] Przemiezczenia węzłowe (, φ, u, φ, u, φ, Γ),( u, φ, u, φ, u, φ, Γ) a węzłów (i) oraz (j) pręta (p) (ry.) i iły f ( ) ( ) związane zależnością przyrotową N ( i) ( j) ą a f, (9) gdzie macierz ztywności tycznej elementu należy wyznaczać z wykorzytaniem zależności

4 Ry. geometrycznych () do (6) i z uwzględnieniem platyczności wyrażonej formułami (7),(8). Należy podkreślić, że konieczność uwzględnienia platyczności czyni problem bardziej złożonym, bowiem oprócz podziału kontrukcji na elementy po długości należy wprowadzić dodatkowe punkty całkowania po wyokości i zerokości przekroju. Poługiwanie ię typowymi charakterytyki geometrycznymi przekroju cienkościennego jet niewytarczające - wymagana jet pełna znajomość wymiarów liniowych przekroju.. odel połączenia podatnego z imperfekcjami Na ry. 4 pokazano model połączenia podatnego o czterech parametrach,, n opi- e p p, any zależnością Ramberda-Ogooda [,]: ( e p ) φ ( φ) + pφ (0) n φ n e p / + ( ) p Parametry połączenia (otoczone obwódką na ry. 4) należy wyznaczyć doświadczalnie lub numerycznie. Bahaari i Sherbourne [] przeprowadzili analizę numeryczną 8 typów połączeń doczołowych za pomocą programu ANSS, porównali wyniki z badaniami doświadczalnymi oraz formuło- Ry. 4 wali krzywe regreji parametrów modelu w zależności od wymiarów geometrycznych połączeń. Praca połączenia utalonego typu itotnie zależy od ztywności jego elementów: blach czołowych, średnicy i

5 roztawu śrub, żeberek, rozmiarów i typów łączonych profili. Przyjmiemy, że parametrami imperfekcji połączeń podatnych ą zmienne [ 4, 5, 6, 7 ] [ e, p, p, n]. Są to globalne parametry połączenia, z których każdy jet nieliniową funkcją wymiarów geometrycznych połączenia (Bahaari i Sherbourne [] wytypowali itotnych wymiarów geometrycznych dla połączenia czołowego z wyuniętą blachą czołową). odel połączenia uogólnijmy na przypadek kręcania i zginania w dwóch płazczyznach. Na ry. 5 pokazano topnie wobody połączenia wyrażone przez iły i przemiezczenia w węźle (i) oraz (j). Przy pominięciu wzajemnego Ry.5 przężenia ztywności w różnych kierunkach wektor przemiezczeń węzłowych połączenia () a [( φ, φ, φ) ( i),( φ, φ, φ) ( j) ] jet związany z iłami węzłowymi macierzą ztywności połączenia () jak natępuje: f [(,, ) ( i),(,, ) ( j) ] I I a f, gdzie I I 0 0 i I 0 0 (a-c) 0 0 Ze względu na tounkowo mały (w tounku do zginania) wpływ kręcania na wytężenie prętów przyjmiemy, że ztywność połączenia na kręcanie jet tała i równa prężytej ztywności początkowej e. Natomiat dla zginania wokół obu oi głównych przekroju przyjmiemy model (9) odpowiednio o parametrach (,,, n) (i, płazczyzny zginania). Przez zróżniczkowanie p p e i tego modelu względem φ, otrzymujemy giętną ztywność tyczną połączenia ( ei pi i n i + i ( ei pi ) φ + pi ) + ( n / n ) pi i (i,), Z przyjętego modelu wynika, że: ) połączenie ma zerową długość, ) pomija ię oiowe i poprzeczne odkztałcenia połączenia, a w rezultacie oba węzły połączenia ą kompatybilne. paczenie: W dwóch najczęściej potykanych przypadkach połączeń przyjmiemy natępujące warunki na ()

6 ) w połączenia rygla ze łupem (ry. 6a) zerowanie paczenia Γ j 0 (pełne ztywność żeberka przeciwko paczeniu Ry. 6a GI h Ry. 6b utwierdzenie ze względu na paczenie). ) w połączeniu belek (ry. 6b) do macierzy ztywności na topniu wobody paczenia węzła należy dodać, gdzie I - ztywność krętna przekroju żeberka, h wyokość belki. W przypadku żebra lub blachy czołowej o zerokości b i grubości t można przyjąć ztywność krętną I / bt.. Błędy montażowe Spoób wykontruowania połączeń czołowych na śruby wyokowytrzymałe zachęca wykonawców do likwidacji nieuniknionych odchyłek wykonawczych przez dokręcenie śrub. W wyniku tego kontrukcja może zotać wprowadzona w tan naprężenia dochodzący do kilkunatu procent jej prężytej nośności (Biegu (998)[]). Wady tyków przypizemy do elementów zakończonych elementami złącznymi. ogą one ob- ( jawiać ię na każdym topniu wobody m ) [ ] [ ],,,,, u, φ, u, φ, u, φ, Γ, 8, więc poprzez: krócenie (wydłużenie) elementu, kąt kręcenia, przeunięcia i kąty obrotu w dwóch płazczyznach oraz paczenie powierzchni przylgowej w przekrojach przywęzłowych elementu. Zakładamy, że obciążenie kontrukcji błędami montażowymi poprzedza wzytkie inne obciążenia oprócz ciężaru włanego. Stanowią więc one tan wyjściowy do dalzej analizy kontrukcji podobnie jak walcownicze naprężenia reztkowe w przekrojach. Błędy montażowe, podobnie jak wpływy termiczne lub przemiezczenia podpór uwzględnia ię w poób konwencjonalny: równoważnik węzłowy wywołany błędem montażowym na danym topniu wobody wynoi: f. ( m) ( m). odel ytemu kontrukcyjnego i wrażliwość nośności. Warunek równowagi ytemu kontrukcyjnego Związki przetawione w p. pozwalają zbudować warunek równowagi ytemu kontrukcyjnego złożonego z prętów cienkościennych z połączeniami odkztałcalnymi. Warunek ten po zlinearyzowaniu dotoowanym do iteracji metodą Newtona-Raphona można zapiać w potaci Styczna macierz ztywności ytemu ( a) δa ( λ + δλ) P f ( a), (e) () jet umą macierzy ztywności prętów (p) oraz

7 połączeń () ((e)(p)+()) i w przypadku nieliniowym zależy od wektora przemiezczeń węzłowych kontrukcji a; f jet wektorem ił wewnętrznych (ił przywęzłowych), P jet obciążeniem odnieienia (konfiguracją obciążenia) kalowanym mnożnikiemλ.. Wrażliwość nośności ytemu prętów cienkościennych Na ry. 7 grubą linią ciągłą oznaczono linię łączącą punkty graniczne PG oberwowane na ścieżkach równowagi kontrukcji wyznaczonych dla różnych wartości imperfekcji. Wrażliwość nośności kontrukcji λgr na zmiany wektora imperfekcji [,, ( m) ] Ry. 7 (imperfekcje prętów (p..), imperfekcje połączeń wynoi () (m) (p..) oraz błędy montażowe (p..)) wrażliwość nośności λ gr Różniczkując warunek równowagi przed linearyzacją G f ( a) λp po otrzymujemy (4) a λ G P + 0. nożąc lewotronnie powyżze równanie przez wektor włany Ψ macierzy f / a, (5) uwzględniając ymetrię macierzy ( Ψ) Ψ 0 oraz warunek punktu granicznego λ d 0, Ψ 0, d gr ( parametr ścieżki równowagi) otrzymujemy wyrażenie na wrażliwość nośności ytemu prętów cienkościennych ( G ) λ gr Ψ (6) Ψ P Wrażliwość nośności jet jedną z podtawowych informacji potrzebnych do wyznaczenia niezawodności kontrukcji [4]. 4. Uwagi i wnioki W pracy przedtawiono podtawy teoretyczne umożliwiające budowę algorytmów numerycznych do analizy ścieżek równowagi, wyznaczania nośności oraz badania wrażliwości nośności kontrukcji zbudowanych z prętów cienkościennych z połączeniami podatnymi obarczonych imperfekcjami

8 geometrycznymi oi prętów, imperfekcjami parametrów połączeń podatnych oraz błędami montażowymi w zakreie nieliniowym geometrycznie oraz fizycznie. Zaproponowany element pręta cienkościennego w poób jawny zawiera parametry imperfekcji geometrycznych wygięć oi oraz wtępnych kręceń, co umożliwia zatoowanie metody bezpośredniego różniczkowania do wyznaczania wrażliwości nośności. odel połączenia podatnego potraktowano w poób zgodny z filozofią metody elementów kończonych, co pozwala na prote modyfikacje tandardowych procedur numerycznych. w pracach [4,5]. Literatura Przykłady analizy kontrukcji z wykorzytaniem przedtawionego algorytmu ą zamiezczane [] Bahaari,.R., Sherbourne, A.N., Finite element prediction of end plate bolted connection behavior. I: Analytic formulation, J. Struct.ngng., ASC, () (997), pp [] Biegu A., Nośność graniczna śrubowych tyków doczołowych z imperfekcjami geometrycznymi, Oficyna Wydawnicza Politechniki Wrocławkiej, Wrocław 998, [] Blandford G.., hin-walled pace frame analyi with geometric and flexible connection nonlinearitie, J. Comput. & Structure, 5(5) (990), pp [4] Chodor L.: Reliability of thin-walled imperfect frame with emi-rigid connection, J.Comput.&Structure (w przygotowaniu) [5] Bijak R, Chodor L.: hin-walled imperfect frame with geometric and material nonlinearitie, Archiwum Inżynierii Lądowej (w przygotowaniu) [6] Chodor L., Bijak R., ołodziej G. (997)., Wrażliwość nośności kontrukcji nieliniowych, ateriały XLIII onf. Nauk ILiW i N PAN, om I: eoria ontrukcji, Poznań-rynica, 997, [7] ing, W.S., Chen W.F., Practical econd-order inelatic analyi of emi-rigid frame, J. Struct. ngng., ASC, 0(7) (994), pp [8] Valentino J, Pi.-L., rahair N.S., Inelatic Buckling of Steel Beam with Central orional Retrain, Journal of Structural ngineering, September 997, pp SNSIIVI ANALSIS OF NONLINAR HIN-WALLD BARS WIH SI-RIGID CONNCIONS Summary Senitivity analyi of -D frame conit with thin-walled rod and emi-rigid connection are developed. Rod model incorporate geometric imperfection and material nonlinear i formulated. he nonlinear connection behavior i modeled uing Ramberg-Ogood moment-rotation relationhip. An efficient algorithm that may be ued to determine enitivity of load capacity of repect connection parameter i hown.

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.

Bardziej szczegółowo

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami

Bardziej szczegółowo

( L,S ) I. Zagadnienia

( L,S ) I. Zagadnienia ( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

MES1pr 02 Konstrukcje szkieletowe 2. Belki

MES1pr 02 Konstrukcje szkieletowe 2. Belki MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO

WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO Zezyty Problemowe Mazyny Elektryczne Nr 83/29 89 Broniław Tomczuk, Jan Zimon Politechnika Opolka, Opole WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO

Bardziej szczegółowo

Opracowanie: Emilia Inczewska 1

Opracowanie: Emilia Inczewska 1 Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla

Bardziej szczegółowo

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

Analiza osiadania pojedynczego pala

Analiza osiadania pojedynczego pala Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5

Bardziej szczegółowo

Kolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych;

Kolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych; Kolejnośd obliczeo Niezbędne dane: - koncepcja układu konstrukcyjnego z wymiarami przekrojów i układem usztywnieo całej bryły budynki; - dane materiałowe klasa betonu klasa stali; - wykonane obliczenia

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

14. WIADOMOŚCI OGÓLNE

14. WIADOMOŚCI OGÓLNE Część 3 4. PODSTAWY MECHANIKI SPRĘŻYSTYCH KONSTRUKCJI PRĘTOWYCH 4. WIADOMOŚCI OGÓLNE 4.. WARUNKI RÓWNOWAGI UKŁADU SIŁ Mechanika kontrukcji zajmuje ię wyznaczaniem ił wewnętrznych i przemiezczeń w różnego

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.

Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

10.0. Schody górne, wspornikowe.

10.0. Schody górne, wspornikowe. 10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95

Bardziej szczegółowo

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA XII KRAJOWA KONFERENCJA Naukowo - Szkoleniowa MECHANIKI PĘKANIA Kraków, 6 9.IX.2009 ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA Małgorzata JANUS-MICHALSKA, Dorota JASIŃSKA

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania

Bardziej szczegółowo

Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v

Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v Biuro Inwestor Nazwa projektu Projektował Sprawdził TrussBar v. 0.9.9.22 Pręt - blacha węzłowa PN-90/B-03200 Wytężenie: 2.61 Dane Pręt L120x80x12 h b f t f t w R 120.00[mm] 80.00[mm] 12.00[mm] 12.00[mm]

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE Szybkobieżne Pojazdy Gąienicowe (19) nr 1, 2004 Zbigniew RACZYŃSKI Jacek SPAŁEK DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

Bardziej szczegółowo

Porównanie zasad projektowania żelbetowych kominów przemysłowych

Porównanie zasad projektowania żelbetowych kominów przemysłowych Budownictwo i Architektura 16(2) (2017) 119-129 DO: 10.24358/Bud-Arch_17_162_09 Porównanie zaad projektowania żelbetowych kominów przemyłowych arta Słowik 1, Amanda Akram 2 1 Katedra Kontrukcji Budowlanych,

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE koina talowego H opartego na trójnogu MPGK Kraono I. Dane geoetryczne koina: H H npt D z g i : - wyokość całkowita :. - pozio pierścienia trójnogu :. - wyokość podtawy

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary: 7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

2. Pręt skręcany o przekroju kołowym

2. Pręt skręcany o przekroju kołowym 2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia

Bardziej szczegółowo

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa Budownictwo i Architektura 13(3) (014) 91-98 Wyboczenie prężyście zamocowanej ścianki wpornikowej z uztywnieniem krawędzi wobodnej Andrzej Szychowki 1 Katedra Mechaniki, Kontrukcji Metalowych i Metod Komputerowych,

Bardziej szczegółowo

262 Połączenia na łączniki mechaniczne Projektowanie połączeń sztywnych uproszczoną metodą składnikową

262 Połączenia na łączniki mechaniczne Projektowanie połączeń sztywnych uproszczoną metodą składnikową 262 Połączenia na łączniki mechaniczne grupy szeregów śrub przyjmuje się wartość P l eff równą sumie długości efektywnej l eff, określonej w odniesieniu do każdego właściwego szeregu śrub jako części grupy

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM

ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM Marcin BAJKOWSKI*, Robert ZALEWSKI* * Intytut Podtaw Budowy Mazyn, Wydział Samochodów i Mazyn Roboczych, Politechnika Warzawka,

Bardziej szczegółowo

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia Ćwiczenie 13 Układ napędowy z ilnikiem indukcyjnym i falownikiem napięcia 3.1. Program ćwiczenia 1. Zapoznanie ię ze terowaniem prędkością ilnika klatkowego przez zmianę czętotliwości napięcia zailającego..

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Wartości graniczne ε w EC3 takie same jak PN gdyŝ. wg PN-90/B ε PN = (215/f d ) 0.5. wg PN-EN 1993 ε EN = (235/f y ) 0.5

Wartości graniczne ε w EC3 takie same jak PN gdyŝ. wg PN-90/B ε PN = (215/f d ) 0.5. wg PN-EN 1993 ε EN = (235/f y ) 0.5 Wartości graniczne ε w EC3 takie same jak PN gdyŝ wg PN-90/B-03200 ε PN = (215/f d ) 0.5 wg PN-EN 1993 ε EN = (235/f y ) 0.5 Skutki niestateczności miejscowej przekrojów klasy 4 i związaną z nią redukcją

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Stateczność ram stalowych z węzłami podatnymi

Stateczność ram stalowych z węzłami podatnymi Stateczność ram stalowych z węzłami podatnymi Dr hab. inż., prof. nadzw. Przemysław Litewka, mgr inż. Michał Bąk, Instytut Konstrukcji Budowlanych, Politechnika Poznańska 1. Wprowadzenie Ramowe konstrukcje

Bardziej szczegółowo

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze.

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze. Budownictwo i Architektura 14(2) (2015) 113-121 Lokalne wyboczenie ścianki wpornikowej elementu cienkościennego przy wzdłużnej i poprzecznej zmienności naprężeń Katedra Mechaniki, Kontrukcji Metalowych

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń

Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej

Bardziej szczegółowo

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:

Bardziej szczegółowo

KONSTRUKCJE METALOWE

KONSTRUKCJE METALOWE KONSTRUKCJE METALOWE ĆWICZENIA 15 GODZ./SEMESTR PROWADZĄCY PRZEDMIOT: prof. Lucjan ŚLĘCZKA PROWADZĄCY ĆWICZENIA: dr inż. Wiesław KUBISZYN P39 ZAKRES TEMATYCZNY ĆWICZEŃ: KONSTRUOWANIE I PROJEKTOWANIE WYBRANYCH

Bardziej szczegółowo

Analiza globalnej stateczności przy użyciu metody ogólnej

Analiza globalnej stateczności przy użyciu metody ogólnej Analiza globalnej stateczności przy użyciu metody ogólnej Informacje ogólne Globalna analiza stateczności elementów konstrukcyjnych ramy może być przeprowadzona metodą ogólną określoną przez EN 1993-1-1

Bardziej szczegółowo

CEL PRACY ZAKRES PRACY

CEL PRACY ZAKRES PRACY CEL PRACY. Analiza energetycznych kryteriów zęczenia wieloosiowego pod względe zastosowanych ateriałów, rodzajów obciążenia, wpływu koncentratora naprężenia i zakresu stosowalności dla ałej i dużej liczby

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

Zadanie 1 Zadanie 2 tylko Zadanie 3

Zadanie 1 Zadanie 2 tylko Zadanie 3 Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi

Bardziej szczegółowo

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY 62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na

Bardziej szczegółowo

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo