Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
|
|
- Grzegorz Szydłowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach kołowych (ry. 7. i pierścieniowych (ry. 7., w dowonym punkcie oddaonym od oi pręta o wiekość ρ, toujemy poniżzą zaeżność τ( ρ ρ I gdzie: moment kręcający, I biegunowy moment bezwładności przekroju poprzecznego, ρ odegłość punktu od oi pręta (promień. Naprężenia tyczne mają wartości proporcjonane do wiekości promienia ρ i ą do niego protopadłe. Stąd wnioek, że makymane naprężenia tyczne τ max wytąpią na zewnętrznym konturze przekroju. Ich wartość możemy okreśić w oparciu o zaeżność τ max k W gdzie: moment kręcający, W wkaźnik wytrzymałości na kręcanie, k naprężenia dopuzczane na kręcanie. Ry. 7.. Ry. 7.. Kąt kręcenia wału wyznaczamy okreśamy natępująco gdzie: moment kręcający, długość wału ub pręta, I φ I moduł prężytości poprzecznej moduł Kirchhoffa, biegunowy moment bezwładności przekroju poprzecznego
2 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Wartości I oraz W da pozczegónych przekrojów ą natępujące: przekrój kołowy przekrój pierścieniowy I I π ( D d W W π ( D d D Rozkład naprężeń tycznych da przekroju protokątnego przedtawiono na ry. 7.. akymane wartości τ max wytępują w połowie dłużzego boku, natomiat w połowie krótzego boku naprężenia oiągają wartość τ *. Do obiczenia naprężeń tycznych τ max i τ * oraz kąta kręcenia pręta φ toujemy zaeżności τ max k W τ * ητ max φ I gdzie: moment kręcający, W wkaźnik wytrzymałości na kręcanie, k I Wiekości naprężenia dopuzczane na kręcanie, długość pręta, moduł prężytości poprzecznej, wkaźnik ztywności przekroju na kręcanie. W i I okreśamy natępująco W α b I β b Ry. 7.. Wartości wpółczynników α, β i η ą zaeżne od wymiarów przekroju (tounku wyokości h do zerokości b. Niektóre wartości zetawiono w tabei 7.. Tabea 7.. Wartości wpółczynników α, β i η w zaeżności o tounku tounek h / b h / b [],5 6 8 α,8,6,9,8,5,7,56, β,,9,57,79,,7,56, η,,859,795,75,75,7,7,7 [] Dyąg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom I, WNT, Warzawa 999.
3 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Zadanie 7.. [] Wał obciążono momentami kręcającymi, i (ry. 7.. Wyznaczyć wartość momentu napędzającego oraz dobrać średnice pozczegónych odcinków wału d, d i d. Da przyjętych średnic okreśić całkowity kąt kręcenia wału φ. Dane: kn m ; kn m ;,5 kn m ; k Pa ; 8, Pa. oment napędzający jet równy,5 6 kn Wykre momentów kręcających przedtawiono na ryunku. Pozczegóne odcinki wału kręcane ą momentami odcinek (,6 m 6,5 kn m odcinek (, m 6,5,5 kn m odcinek (,5 m,5 kn m Obiczamy średnice pozczegónych odcinków wału odcinek odcinek odcinek d d d τ max m W k k d π k 6,5 9, m π k 6 π,5 76,8 m π k 6 π,5 57,59 m π k 6 π Dobieramy średnice pozczegónych odcinków wału: Ry , mm 76,8 mm 57,59 mm d 95 mm d 78 mm d 58 mm Całkowity kąt kręcenia wału jet równy umie kątów kręcenia pozczegónych odcinków φ φ φ φ I I I π d d d π 8, 6,5,6,5,,5,5 8,9,9,78,58 rad,8
4 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Zadanie 7.. [] Obiczyć dopuzczaną wartość momentu, jakim można obciążyć wał pokazany na ry Da przyjętej wartości momentu obiczyć całkowity kąt kręcenia wału. Dane: d mm ; mm ; k 7 Pa ; 8,5 Pa. Ry Jak widać na ryunku 7.5, najbardziej obciążonym odcinkiem wału jet odcinek duży moment i mała średnica. Obiczenia dopuzczanej wartości momentu przeprowadzimy jedynie da tego odcinka. Z warunku wytrzymałościowego mamy τ max k Wk W k 8 k π 7 95 N mm 9,5 N m 8 Do dazych obiczeń przyjmijmy 9 N m. Obiczmy całkowity kąt kręcenia wału φ φ φ φ I I 9 5,7 8,5 π I π(d π(d rad,7
5 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Zadanie 7.. Obiczyć dopuzczaną wartość momentu, jakim można obciążyć wał pokazany na ry. 7.6 oraz obiczyć całkowity kąt kręcenia wału. Dane: d ; ; k ;. Ry W niniejzym zadaniu naeży rozpatrzyć przynajmniej dwa odcinki wału, tj. i, gdyż trudno wkazać odcinek najbardziej obciążony. Na odcinku działa więkzy moment, a wał jet pełny, natomiat na odcinku wał jet wydrążony, ae obciążony dwukrotnie mniejzym momentem. Z warunku wytrzymałościowego mamy da odcinka da odcinka τ max k W k W π(d k k π[(d d d 5 Jak widać, mniejze obciążenie może przenieść odcinek dopuzczana wartość momentu jet równa Obiczmy całkowity kąt kręcenia wału φ φ 5 φ φ I 5 I k k d I ] k k k π(d π(d π [(d d ] Dodatnia wartość kąta kręcenia świadczy o tym, że końcowy przekrój wału (A-A obróci ię w kierunku przeciwnym niż kierunek momentu (jego kierunek przyjęiśmy za ujemny.
6 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Zadanie 7.. Obiczyć makymaną wartość momentu, jakim można obciążyć utwierdzony obutronnie pręt (ry Dane: d ;. Warunek równowagi momentów kręcających wzgędem oi pręta jet natępujący (zgodnie z ryunkiem Σ A B A B Jak widać, mamy do czynienia z układem jednokrotnie tatycznie nie wyznaczanym (dwie niewiadome i jedno równanie Drugi równanie okreśimy na podtawie kątów kręcenia odcinków pręta amy zatem φ A -B φ φ φ A -B I I Ry Obiczamy wartości momentów I I A B π(d π(d A i B 8 A 8 8 A 8 B akymaną wartość momentu wyznaczymy podobnie jak zadaniach 7. i 7.. Z warunku wytrzymałościowego mamy da odcinka da odcinka B 8 π(d 8 8 k k π(d k k akymana wartość momentu, jakim można obciążyć pręt, jet równa 8 k
7 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach Zadanie 7.5. Obiczyć makymaną wartość momentu, jakim można obciążyć utwierdzony pręt o przekroju kwadratowym wymiary a a (ry Wyniki porównać z przypadkiem kręcania dwóch prętów o przekroju protokątnym (ry Porównać kąty kręcenia prętów (w obu przypadkach przy obciążeniu momentem. Dane: a ; ; k ;. Ry Ry akymaną wartość momentu wyznaczymy z warunku wytrzymałościowego da przekrojów protokątnych τ max W W k k α b k przypadek jednego pręta o przekroju kwadratowym zgodnie z tabeą, da tounku h / b wpółczynnik α, 8 Imax, 8a przypadek dwóch prętów o przekroju protokątnym zgodnie z tabeą, da tounku h / b wpółczynnik α, 9 Porównujemy wyniki II max k,9 a II max, a II max, a k,59 Imax,8a k Dwa pręty o przekroju protokątnym mają mogą przenieść niecałe 6% momentu jakim można obciążyć pręt o przekroju kwadratowym. k k Do obiczenia kątów kręcenia wykorzytamy poniżzą zaeżność φ I φ β b
8 7. Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach przypadek jednego pręta o przekroju kwadratowym zgodnie z tabeą 7., da tounku h / b wpółczynnik β, φ I,, a a przypadek dwóch prętów o przekroju protokątnym zgodnie z tabeą 7., da tounku h / b wpółczynnik β, 57 φ II,57 a,57 a Porównujemy wyniki φ φ II I,57, a a,5 Dwa pręty o przekroju protokątnym kręciłyby ię o kąt prawie,5 razy więkzy niż pręt o przekroju kwadratowym obciążony takim amym momentem kręcającym. Literatura [] Dyąg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów. Tom I, WNT, Warzawa 999. [] Niezgodzińki.E., Niezgodzińki T.: Zadania z wytrzymałości materiałów, WNT, Warzawa 997. [] Banaiak., roman K., Trombki.: Zbiór zadań z wytrzymałości materiałów, PWN, Warzawa 99.
Skręcanie prętów naprężenia styczne, kąty obrotu 4
Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),
Bardziej szczegółowoNaprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
Bardziej szczegółowoSkręcanie prętów napręŝenia styczne, kąty obrotu, projektowanie 3
Skręcanie pręów napręŝenia yczne, kąy obrou, projekowanie W przypadku kręcania pręa jego obciąŝenie anowią momeny kręcające i. Na ry..1a przedawiono przykład pręa zywno zamocowanego na ewym końcu (punk
Bardziej szczegółowoWYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ
Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem
Bardziej szczegółowoPrzykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowoWYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
Bardziej szczegółowos Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s
Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności
Bardziej szczegółowoSKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Bardziej szczegółowo1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.
Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego
Bardziej szczegółowoKATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 4 Badanie masowych momentów bezwładności Ce ćwiczenia Wyznaczanie masowego momentu bezwładności bryły metodą
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowo2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Bardziej szczegółowoPodstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Bardziej szczegółowoWyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego
Bardziej szczegółowoPodstawy Konstrukcji Maszyn
Podtawy Kontrukcji azyn Wykład 4 Połączenia śrubowe Dr inŝ. Jacek Czarnigowki Połączenia w kontrukcji mazyn Połączenia Pośrednie Połączenie z elementem dodatkowym pomiędzy elementami łączonymi Bezpośrednie
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowoCzęść 2 8. METODA CROSSA 1 8. METODA CROSSA Wprowadzenie
Część. ETOA CROSSA 1.. ETOA CROSSA.1. Wprowadzenie etoda Crossa pozwaa w łatwy sposób okreśić wartości sił wewnętrznych w układach niewyznaczanych, jednak dokładność obiczeń zaeży od iczby przeprowadzonych
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoSprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.
Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
Bardziej szczegółowoLINIOWA MECHANIKA PĘKANIA
Podstawowe informacje nt. LNOWA MECHANKA PĘKANA Wytrzymałość materiałów J. German PRZYKŁADY Przykład Przeanaizować szczeinę o długości, która tworzy kąt α z kierunkiem x, znajdującą się w nieograniczonym
Bardziej szczegółowoPróba statyczna zwykła rozciągania metali
Próba statyczna zwykła rozciągania metai Opracował: XXXXXXX stdia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 1 r. Wprowadzenie Podstawową próbą badań własności mechanicznych metai jest próba
Bardziej szczegółowo1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Bardziej szczegółowoZginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Bardziej szczegółowoPODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM)
PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM) Automatyka i Robotyka Sem. 3 Dr inŝ. Anna DĄBROWSKA-TKACZYK (4,, 8, 5) X; (8, 3,, 9) XI; (6, 3, 0), XII; (3, 0, 7, 4) I 3 XI (wtorek) zamiast 5 XI (czwartek) Dzień
Bardziej szczegółowoŚcinanie i skręcanie. dr hab. inż. Tadeusz Chyży
Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują
Bardziej szczegółowoTra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Bardziej szczegółowoLVI Olimpiada Matematyczna
LVI Olimpiada Matematyczna Rozwiązania zadań konkurowych zawodów topnia trzeciego 13 kwietnia 2005 r (pierwzy dzień zawodów) Zadanie 1 Wyznaczyć wzytkie trójki (x, y, n) liczb całkowitych dodatnich pełniające
Bardziej szczegółowoSZEREGOWY SYSTEM HYDRAULICZNY
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..
Bardziej szczegółowoRozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2
Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Bardziej szczegółowoWydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych
Wydział Eektryczny, Katedra Mazyn, Napędów i Pomiarów Eektrycznych Laboratorium Przetwarzania i Anaizy Sygnałów Eektrycznych (bud A5, aa 310) Intrukcja da tudentów kierunku Automatyka i obotyka do zajęć
Bardziej szczegółowoSprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
Bardziej szczegółowoZadanie 1: śruba rozciągana i skręcana
Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowo15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
Bardziej szczegółowo11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
Bardziej szczegółowoWytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Bardziej szczegółowo9. DZIAŁANIE SIŁY NORMALNEJ
Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory
Bardziej szczegółowoPrzykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Bardziej szczegółowoZadanie 1 Zadanie 2 tylko Zadanie 3
Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi
Bardziej szczegółowoPORADNIK PROJEKTANTA KSZTAŁTOWNIKI GIĘTE
PORADNIK PROJEKTANTA KSZTAŁTOWNIKI GIĘTE Bochnia, październik 2004 1. Spi treści 1. Spi treści...3 2. Program produkcji Stalprodukt S.A...4 2.1. Certyfikaty, uprawnienia i akceptacje techniczne...4 2.2.
Bardziej szczegółowo( L,S ) I. Zagadnienia
( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,
Bardziej szczegółowoPrzykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Bardziej szczegółowoLaboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Bardziej szczegółowoWykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym
Wykład 4. Skręane nekrępowane prętów o przekroju enkośennym otwartym zamknętym. Pręt o przekroju enkośennym otwartym la przekroju pręta pokazanego na ryunku przyjmjmy funkje naprężeń Prandtla, która tylko
Bardziej szczegółowoCIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Bardziej szczegółowoSPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA
SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoWyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Bardziej szczegółowoSkręcanie prętów projektowanie 5
Skręcane pręó projekoane 5 Spoó rozązyana pręó kręcanych zoał omóony rozdzae. Zadana projekoe proadzają ę do okreśena ymaró przekroju poprzecznego pręa na podae arunku nośnośc /u arunku użykoana. przypadku
Bardziej szczegółowoMES1pr 02 Konstrukcje szkieletowe 2. Belki
MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
Bardziej szczegółowoWyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Bardziej szczegółowo4.4. Obliczanie elementów grzejnych
4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).
Bardziej szczegółowoBelka - podciąg EN :2006
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamGirder v. 0.9.9.22 Belka - podciąg EN 1991-1-8:2006 Wytężenie: 0.76 Dane Podciąg IPE360 h p b fp t fp t wp R p 360.00[mm] 170.00[mm] 12.70[mm] 8.00[mm]
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Bardziej szczegółowoZ-LOGN Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Bardziej szczegółowoROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta
ROZCIĄGNIE I ŚCISKNIE OSIOWE Pojęcia podstawowe. Zasada de Saint Venanta Pręt obciążony siłami podłużnymi (działającymi wzdłuż osi pręta) nazywamy prętem rozciąganym, gdyż siła podłużna jest dodatnia (N
Bardziej szczegółowo2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
Bardziej szczegółowoObciążenia. Wartość Jednostka Mnożnik [m] oblicz. [kn/m] 1 ciężar [kn/m 2 ]
Projekt: pomnik Wałowa Strona 1 1. obciążenia -pomnik Obciążenia Zestaw 1 nr Rodzaj obciążenia 1 obciążenie wiatrem 2 ciężar pomnika 3 ciężąr cokołu fi 80 Wartość Jednostka Mnożnik [m] obciążenie charakter.
Bardziej szczegółowo10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
Bardziej szczegółowoŚcinanie betonu wg PN-EN (EC2)
Ścinanie betonu wg PN-EN 992-2 (EC2) (Opracowanie: dr inż. Dariusz Sobala, v. 200428) Maksymalna siła ścinająca: V Ed 4000 kn Przekrój nie wymagający zbrojenia na ścianie: W elementach, które z obliczeniowego
Bardziej szczegółowoWytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/201 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE MODUŁU W
Bardziej szczegółowo( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją
..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,
Bardziej szczegółowoPorównanie zasad projektowania żelbetowych kominów przemysłowych
Budownictwo i Architektura 16(2) (2017) 119-129 DO: 10.24358/Bud-Arch_17_162_09 Porównanie zaad projektowania żelbetowych kominów przemyłowych arta Słowik 1, Amanda Akram 2 1 Katedra Kontrukcji Budowlanych,
Bardziej szczegółowoLABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bardziej szczegółowoNależy zwrócić uwagę, względem której zmiennej wykonujemy różniczkowanie. Zgodnie z przyjętymi oznaczeniami: pochodne po czasie t,
Część 2 14. DRGANIA PRĘTÓW PROSTYCH O CIĄGŁYM ROZKŁADZIE MASY 1 14. 14. DRGANIA PRĘTÓW PROSTYCH O CIĄGŁYM ROZKŁADZIE MASY 14.1. Drgania poprzeczne pręta pryzmatycznego pręta. Drgania poprzeczne są to takie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Bardziej szczegółowoWYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym
Bardziej szczegółowom Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Bardziej szczegółowoα k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
Bardziej szczegółowoAl.Politechniki 6, 93-àyG(3RODQG7HO)D[
KATEDRA MECHANIKI 0$7(5,$àÏ: DEPARTMENT OF MECHANICS OF MATERIALS 32/,7(&+1,.$àÏ'=.$ 7(&+1,&$/81,9(56,7
Bardziej szczegółowoWYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY
Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich
Bardziej szczegółowoMateriał dydaktyczny - dr inż. Dariusz Sobala ŚWIATŁO PRZEPUSTU Przykład obliczeń dla przepustu o niezatopionym wlocie i wylocie
Materiał dydaktyczny - dr inż. Dariuz Sobala ŚWIATŁO PRZEPUSTU Przykład obliczeń dla przeputu o niezatopionym wlocie i wylocie Piśmiennictwo: 1.. ROZPORZĄDZENIE MINISTRA TRANSPORTU I GOSPODARKI MORSKIEJ
Bardziej szczegółowoWYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Bardziej szczegółowoPrzykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Bardziej szczegółowoZ czego i czym budować?
Zezyt 2. Z czego i czym budować? czyi Kataog Wyrobów i Narzędzi Opracowanie: mgr inż. arc. Zbigniew Babińki, dr inż. Janina Siejko na podtawie materiałów Stowarzyzenia Producentów Betonów STOWARZYSZENIE
Bardziej szczegółowoLiczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Bardziej szczegółowoRys.1. Rozkład wzdłuż długości wału momentów wewnętrznych skręcających ten wał wyznacza
Intrukcja przygtwania i realizacji cenariuza dtycząceg ćwiczenia T5 z przedmitu "Wytrzymałść materiałów", przeznaczna dla tudentów II rku tudiów tacjnarnych I tpnia w kierunku Energetyka na Wydz. Energetyki
Bardziej szczegółowo7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Bardziej szczegółowoZad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.
Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.
Bardziej szczegółowoZmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego
Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa
Bardziej szczegółowoMECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Bardziej szczegółowoMechanika Analityczna i Drgania
Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła
Bardziej szczegółowoENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
Bardziej szczegółowo700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Bardziej szczegółowoPROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Bardziej szczegółowoPręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Bardziej szczegółowoDZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEśNOŚCI PODSTAWOWE Podstawy teorii skręcania swobodnego prętów spręŝystych
Część. DZIŁNIE MOMENTU SKRĘCJĄCEGO DZIŁNIE MOMENTU SKRĘCJĄCEGO.. ZLEśNOŚCI PODSTWOWE... Podtawy teorii kręcania wobodnego prętów pręŝytych RozwaŜmy jednorodny, izotropowy, liniowo-pręŝyty pręt pryzmatyczny
Bardziej szczegółowoDane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v
Biuro Inwestor Nazwa projektu Projektował Sprawdził TrussBar v. 0.9.9.22 Pręt - blacha węzłowa PN-90/B-03200 Wytężenie: 2.61 Dane Pręt L120x80x12 h b f t f t w R 120.00[mm] 80.00[mm] 12.00[mm] 12.00[mm]
Bardziej szczegółowoWytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
Bardziej szczegółowogdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
Bardziej szczegółowoProjekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy)
Niniejzy projekt kłada ię z dwóch części: Projekt 2 tudium wykonalności ) yznaczenia obciążenia powierzchni i obciążenia ciągu (mocy) przyzłego amolotu 2) Ozacowania koztów realizacji projektu. yznaczenie
Bardziej szczegółowo