Metody systemowe i decyzyjne w informatyce
|
|
- Błażej Ciesielski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w jakim rośnie liczba użytkowników, jet proporcjonalne do różnicy potencjalnych użytkowników i aktualnych użytkowników. Po 2 latach połowa potencjalnych użytkowników zarejetrowała ię na portalu. Ile przewidywalnie użytkowników będzie zarejetrowanych do końca 4 roku? Zad. 2 W baenie o pojemności 500 [m 3 ] mogą kąpać ię ludzie, jeśli wkaźnik zanieczyzczenia wody nie przekracza 1% objętości. Z powodu awarii ytemu oczyzczającego wkaźnik zanieczyzczenia oiągnął poziom 10%. Po jakim czaie wkaźnik czytości oiągnie dopuzczalną normę przy założeniu, że ytem oczyzczający wpompowuje i wypompowuje 5 [m 3 /h]. Tranformata Laplace a Zad. 3 Wyznacz tranformaty Laplace a poniżzych funkcji, korzytając z definicji: a) 1(t) b) e at c) in at d) co at e) t n, n N f) δ(t) delta Diraca Liniowe równania różniczkowe. Sytemy wejściowo-wyjściowe Zad. 4 Amortyzator w rowerze jet obciążany maą m. Zgodnie z prawem Hooke a iła działająca na ciało o maie m jet odwrotnie kierowana do kierunku wychylenia i proporcjonalna do niego zgodnie ze wpółczynnikiem prężytości k. Dodatkowo na ciało działa iła tłumienia, która jet także odwrotnie kierowana do kierunku wychylenia i proporcjonalna do prędkości ciała zgodnie ze 1
2 wpółczynnikiem tłumienia c. Zakładając, że amortyzator jet kierowany protopadle do kierunku jazdy, formułuj odpowiednie równanie różniczkowe i rozwiąż natępujące zagadnienia, przyjmując m = 20[kg], k = 2000[N/m], c = 200[kg/]: a) Początkowe wychylenie wynoi x(0) = 10cm i na ciało nie działają żadne iły zewnętrzne. Wyznacz i naryuj x(t). b) Dodatkowo zakładamy, że na rower działa dodatkowa iła zewnętrzna F (t). Wyznacz tranmitancję ytemu (dla zerowych warunków początkowych). c) Wyznacz x(t), gdy na ciało działa tała iła grawitacji F (t) = mg1(t) i na początku rower wpada na przezkodę o wyokości h = 5[cm]. Zad. 5 Przebieg zmian zawartości inuliny we krwi człowieka po podaniu dawki inuliny można modelować natępującym równaniem różniczkowym: d 2 y dt 2 + 2dy dt + y = u, gdzie u(t) oznacza dawkowanie inuliny w czaie, a y(t) jet przebiegiem zmian odchylenia zawartości inuliny od punktu równowagi. Zakładając, że przed zaaplikowaniem inuliny proce był w tanie równowagi (zerowe warunki początkowe), wyznacz jego tranmitancję oraz odpowiedzi na impul Diraca u(t) = δ(t) oraz na kok jednotkowy u(t) = 1(t). Wykreśl przebiegi y(t) dla obu pobudzeń. Zinterpretuj impul Diraca i kok jednotkowy w kontekście dawkowania inuliny. Zad. 6 Dany jet układ elektryczny RLC (opornik, cewka, kondenator) o oporze R, indukcyjności L i pojemności C. Spadki napięcia na pozczególnych elementach wynozą odpowiednio RI, L di, Q. dt C Zależność natężenia od ładunku wyraża ię wzorem I = dq. Zgodnie z prawem Kirchhoffa uma dt padków napięć jet równa przyłożonej ile elektromotorycznej E(t). Sformułować odpowiednie równanie różniczkowe drugiego rzędu i znaleźć przebiegi ładunku i natężenia od czau dla E(t) = co t, R = 20[Ω], L = 1[H], C = 100[µF ], oraz natępujących warunków początkowych Q(0) = 0, I(0) = 0. 2
3 Układy równań różniczkowych. Wektor tanu Zad. 7 Równanie różniczkowe z zadań 4.b) i 6 zapiać w formie równania tanu. Zad. 8 Jajko o temperaturze T 0 = 20[ ] zanurzone zotało we wrzącej wodzie (temperatura T w = 100[ ]). Wpółczynniki przewodnictwa cieplnego wynozą odpowiednio λ b = 0.5[W/mK] dla białka i λ z = 0.3[W/mK] dla żółtka. Zapiać równanie tanu i wyznaczyć przebieg temperatury od czau dla białka i żółtka. Zadanie domowe (5 pkt.) Korzytając z metody indukcji matematycznej i definicji udowodnić natępującą właność tranformaty Laplace a: L [ f (n) (t) ] = n L [f (t)] n 1 f (0) n 2 f (0)... f (n 1) (0). 3
4 Tranformata Laplace a: DODATEK Tranformatą Laplace a nazywamy natępujące przekztałcenie: L [f (t)] 0 f (t) e t dt, Tranformata Laplace a poiada natępujące właności: gdzie jet zmienną zepoloną. 1. L [a 1 f 1 (t) + a 2 f 2 (t)] = a 1 L [f 1 (t)] + a 2 L [f 2 (t)], gdzie a 1, a 2 R. 2. L [ f (n) (t) ] = n L [f (t)] n 1 f (0) n 2 f (0)... f (n 1) (0). [ t ] 3. L f (u) du = 1 L [f (t)] Jeśli L [f (t)] = F () to L [( 1) n t n f (t)] = F (n) (). [ ] f (t) 5. L = F () d. t f (t) L [f (t)] f (t) L [f (t)] Delta Diraca: 1(t) in at co at t in at t co at 1 a 2 + a a 2 2a ( 2 + a 2 ) 2 2 a 2 ( 2 + a 2 ) 2 e at 1 a e at in bt e at co bt b ( a) 2 + b 2 a ( a) 2 + b 2 t n n!, n N 1 n+1 e at tn n!, n N 1 ( a) n+1 Tablica 1: Tabela częto używanych tranformat Laplace a Deltą Diraca nazywamy obiekt matematyczny o natępujących włanościach: { +, jeśli t = 0, δ(t) = 0, w przeciwnym przypadku której całka po całej protej jet znormalizowana, tzn. + δ(t)dt = 1. 4
5 Wybrane właności delty Diraca: L [δ(t)] = 1 d1(t) dt = δ(t) δ(t τ)f(t)dt = f(τ) 5
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
1 Przekształcenie Laplace a
Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy
Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.
Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.
Statyczne charakterystyki czujników
Statyczne charakterytyki czujników Określają działanie czujnika w normalnych warunkach otoczenia przy bardzo powolnych zmianach wielkości wejściowej. Itotne zagadnienia: kalibracji hiterezy powtarzalności
PODSTAWY AUTOMATYKI 1 ĆWICZENIA
Elektrotechnika Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita zadań nr Tranformata Laplace a. Korzytając wprot z definicji znaleźć tranformatę Laplace a funkcji: y ( t 3 y( t y ( t ( ) 3 t y t
PODSTAWY AUTOMATYKI ĆWICZENIA
lita zadań nr Tranformata Laplace a Korzytając wprot z definicji znaleźć tranformatę Laplace a funkcji: a y ( t+ y ( t b y ( t+ d ( ) t y t e + Dana jet odpowiedź na impul Diraca (funkcja wagi) g ( Znaleźć
i odwrotnie: ; D) 20 km h
3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
Na prawach rękopiu do użytku łużbowego INSTYTUT ENEROELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA ĆWICZENIE Nr SPOSOBY
1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej
. Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy
RYTERIA OCENIANIA ODPOIEDZI Próbna Matura z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 03 niniejzy cheacie oceniania zadań otwartych ą prezentowane przykładowe poprawne odpowiedzi. tego typu ch
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.
INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Podstawy Automatyki. Karol Cupiał
Poawy Automatyki Karol Cupiał Czętochowa tyczeń Kierunek Energetyka tudia tacjonarne em. 3 we 3 l3 c Kierunek Mechanika i BM tudia tacjonarne em 4 5 w 3 l Kierunek Mechatronika tudia tacjonarne em. 5 w
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Mazyn Roboczych tudia inżynierkie prowadzący: mgr inż. Sebatian Korczak Poniżze materiały tylko dla tudentów uczęzczających na zajęcia. Zakaz
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Zagadnienia na badanie wyników nauczani z fizyki kl II. [min]
Zagadnienia na badanie wyników nauczani z fizyki kl II Badanie wyników obejmuje natępujące działy: 1.Ruchy.Dynamika 3.Praca, moc, energia mechaniczna Przykładowe zadania Zad.1 (0-3pkt.) Jacek przez dwie
PODSTAWY AUTOMATYKI 1 ĆWICZENIA
Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź
Układ uśrednionych równań przetwornicy
Układ uśrednionych równań przetwornicy L C = d t v g t T d t v t T d v t T i g t T = d t i t T = d t i t T v t T R Układ jet nieliniowy, gdyż zawiera iloczyny wielkości zmiennych w czaie d i t T mnożenie
2. Wyznaczyć K(s)=? 3. Parametry układu przedstawionego na rysunku są następujące: Obiekt opisany równaniem: y = x(
Przykładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI. Dla przedtawionego układu a) Podać równanie różniczkujące opiujące układ Y b) Wyznacz tranmitancję operatorową X C R x(t) L. Wyznaczyć
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Zadania do sprawdzianu
Zadanie 1. (1 pkt) Na podtawie wykreu możemy twierdzić, że: Zadania do prawdzianu A) ciało I zaczęło poruzać ię o 4 później niż ciało II; B) ruch ciała II od momentu tartu do chwili potkania trwał 5 ;
SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć.
SPRAWDZIAN z działu: Dynamika TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć....... imię i nazwiko... klaa 1. Które z poniżzych zdań tanowi
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH
DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie
POMOCNIK GIMNAZJALISTY
POMOCNIK GIMNAZJALISTY ważne wzory i definicje z fizyki opracowała gr Irena Keka KLASA I... 3 I. WIADOMOŚCI WSTĘPNE... 3 II. HYDROSTATYKA I AEROSTATYKA... 4 Klaa II... 5 I. KINEMATYKA... 5 II. DYNAMIKA...
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Ochrony Powietrza
POLITECHNIK KRKOWSK Intytut Inżynierii Cieplnej i Ochrony Powietrza PODSTWY UTOMTYCZNEJ REULCJI DL STUDIÓW NIESTCJONRNYCH WYKŁD 2: Właściwości złożonych obiektów terowania DR INŻ. JN PORZUCZEK OIEKTY ZŁOŻONE
PODSTAWY AUTOMATYKI 2 ĆWICZENIA
Elektrotechnika Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Z Korytając wrot definicji naleźć tranformatę Z funkcji: f f n) 5n n n) f n) n 4 e t f ) n tt f n f e Korytając
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Dielektryki Opis w domenie częstotliwości
Dielektryki Opis w domenie częstotliwości Ryszard J. Barczyński, 2013 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Opis w domenie częstotliwości
Blok 2: Zależność funkcyjna wielkości fizycznych
Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po
WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ
Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:
Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
Tematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY
MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2010/2011 Cza trwania: 90 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych,
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM
Konkury w województwie podkarpacki w roku zkolny 2005/2006... pieczątka nagłówkowa zkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkuru
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Zestaw zadań z Równań różniczkowych I
Zestaw zadań z Równań różniczkowych I Zadanie 1. Rozwiąż równanie Metoda rozdzielania zmiennych 1 6d 6ydy = 3 ydy y d y4 + e dy e d = 0 3 4 + y d + y 1 + dy = 0 4 6d ydy = y dy 3y d 5 1 + e yy = e 6 y
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny
Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,
1 W ruchu jednostajnym prostoliniowym droga:
TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ
Szybkobieżne Pojazdy Gąienicowe (22) nr 1, 2007 Zbigniew RACZYŃSKI MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ Strezczenie: W artykule przedtawiono zaadę działania wyrzutni cewkowej i zynowej. Przedtawiono wyniki
II ETAP GIMNAZJADY FIZYCZNEJ 2011/2012
Część I zadania zamknięte II ETAP GIMNAZJADY FIZYCZNEJ 2011/2012 Zadanie 1. W której z opianych ytuacji nie zotała wykonana praca mechaniczna? a) Koń ciągnął wóz po protym odcinku drogi. b) Jacek trzyma
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej
Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.
MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów.. Amperomierz należy podłączyć zeregowo. Zadanie. Żaróweczki... Obliczenie
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejce na naklejkę z kodem zkoły dylekja MFA-PAP-06 EGZAMIN MAURALNY Z FIZYKI I ASRONOMII POZIOM PODSAWOWY Cza pracy 0 minut Intrukcja dla zdającego. Sprawdź, czy arkuz egzaminacyjny zawiera 3 tron (zadania
interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie
Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.
MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów. Numer zadania Czynności unktacja Uwagi. Amperomierz należy podłączyć
Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)
Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Zadania egzaminacyjne z fizyki.
Zadania egzaminacyjne z fizyki. Zad1 Gdy Ala z I a zapyta Cię: Skąd się wzięła ta piękna tęcza na niebie?, odpowiesz: A. to odbicie światła słonecznego od powierzchni kropli deszczu B. to rozszczepienie
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie
3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
STAŁY PRĄD ELEKTRYCZNY
STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016
EUROELEKTRA Ogólnopolka Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok zkolny 015/016 Zadania z elektrotechniki na zawody III topnia Rozwiązania Intrukcja dla zdającego 1. Cza trwania zawodów: 10 minut..
( L,S ) I. Zagadnienia
( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3
Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór
LXI MIĘDZYSZKOLNY TURNIEJ FIZYCZNY. dla uczniów szkół ponadgimnazjalnych województwa zachodniopomorskiego w roku szkolnym 2018/2019 TEST
LXI MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych województwa zachodniopomorskiego w roku szkolnym 08/09 TEST (Czas rozwiązywania 60 minut). Ciało rzucone poziomo z prędkością o wartości
Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty
λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu
Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie
30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY
30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie
E dec. Obwód zastępczy. Napięcie rozkładowe
Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)
KO OF Szczecin:
55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych
Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d
Jak rozwiązać test? Każde pytanie ma podane cztery możliwe odpowiedzi oznaczone jako a, b, c, d. Należy wskazać czy dana odpowiedź, w świetle zadanego pytania, jest prawdziwa czy fałszywa, lub zrezygnować
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Obwody elektryczne Jacek.Szczytko@fuw.edu.pl
Obwody elektryczne Jacek.Szczytko@fuw.edu.pl 1. Podstawowe pojęcia ładunek elektryczny - wyrażamy w kulombach [C] (analogia hydrodynamiczna: masa wody) Źródło: np. Wikipedia! natężenie prądu I wyrażamy
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
Charakterystyki częstotliwościowe elementów pasywnych
Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu
Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej
Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:
SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I
SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...
Programy CAD w praktyce inŝynierskiej
Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.