( L,S ) I. Zagadnienia

Wielkość: px
Rozpocząć pokaz od strony:

Download "( L,S ) I. Zagadnienia"

Transkrypt

1 ( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie, rozciąganie i kręcanie. II. Zadania. Pomiary trzałki ugięcia kości oraz obiektów (rurki i pręty) wyznaczonych przez aytenta. 2. Wyznaczenie modułu Younga kości i badanych materiałów.. Pomiar kąta kręcenia kości, wyznaczanie modułu Kirchhoffa.. Wyznaczenie modułu prężytości potaci kości i wpółczynnika Poiona. Intrukcja do ćwiczenia Sprężytość materiałów

2 III. Wykonanie ćwiczenia. Pomiary geometryczne kości - Zmierzyć uwmiarką długość L dla badanej kości, tj.: a) odległość pomiędzy punktami podparcia - pomiar ugięcia b) odległość między pierścieniami, w których jet oadzona - pomiar kręcenia. - Zmierzyć średnicę D w najcieńzym miejcu kości w dwóch protopadłych kierunkach i obliczyć wartość średnią średnicy. - Na przekroju odciętego fragmentu kości zmierzyć grubość r wartwy korowej w miejcach gdzie jet najcieńza i najgrubza i wyliczyć wartość średnią. - Wyniki pomiarów zapiać w Tabeli prawozdania. 2. Pomiar trzałki ugięcia kości i opracowanie wyników - Umieścić kość w leżu do pomiaru ugięcia (zgodnie z intrukcjami Urządzenia do pomiaru prężytości oraz Teting of elaticity). - Sprawdzić gotowość układów elektronicznych do pracy i poprawność wzytkich utawień. - Uruchomić program Teting of elaticity. - Rozpocząć pomiar klikając przycik Start. Po zakończeniu pomiaru zapiać wyniki w folderze ćwiczenia założonym na dyku lokalnym D:\Temp. - Otworzyć program Statitica i zaimportować do niego wyniki pomiarów (patrz intrukcja programu Statitica; zaznaczyć w oknie importu opcję Ignore conecutive delimiter). Utworzyć wykre zależności trzałki ugięcia kości (kolumna, zmienna Var) od działającej iły (kolumna 2, zmienna Var2). - Dopaować protą y = * x + A do wyników ekperymentalnych (lub części wykreu, dla której ugięcie wzrata proporcjonalnie do iły), odczytać parametry A [mm] i [mm/n] protej dopaowania. Wykre oraz wyniki dopaowania kopiować do prawozdania. - Wyniki analizy wykonane w programie Statitica zapiać w folderze ćwiczenia.. Pomiary trzałki ugięcia dla zadanych obiektów i opracowanie wyników. Intrukcja do ćwiczenia Sprężytość materiałów 2

3 - Zmierzyć przy pomocy uwmiarki średnice zewnętrzne D badanych prętów oraz średnice wewnętrzne Dw i zewnętrzne Dz rurek oraz odległość pomiędzy punktami podparcia badanych elementów (długość L). Wyniki pomiarów zapiać w Tabeli 2 prawozdania. - Wyniki pomiarów zapiać w folderze ćwiczenia założonym na dyku lokalnym D:\Temp. - Wyniki kolejno importować do oobnych arkuzy programu Statitica i potępując tak jak w punkcie 2, dokonać analizy ugięć wzytkich zadanych obiektów, a wyniki zapiać w folderze ćwiczenia i kopiować do prawozdania.. Wyznaczenie modułu Younga kości i materiałów, z których wykonane ą rurki. Kość długą można w przybliżeniu potraktować jako rurkę. Siła F działająca na kość powoduje jej ugięcie, trzałkę ugięcia oznaczamy jako. Zgodnie z prawem Hooke a dla odkztałceń prężytych trzałka ugięcia jet liniową funkcją iły i zależy od modułu Younga E kości. Ugięcie rurki poddanej działaniu iły F przedtawia wzór: L E 2 r r z w F [] gdzie: L długość kości, rw, rz promień wewnętrzny i zewnętrzny rurki, E moduł Younga. W pkt. 2 i wykonane zotały wykrey zależności od F i wyznaczone wpółczynniki regreji liniowej odpowiednio dla kości i badanej rurki. Wykorzytując te dane F i wzór [] możemy wyliczyć moduł Younga kości (i wzytkich innych obiektów tego typu) wg wzoru: E 2 L r r z w [2] Na podtawie danych z Tabel i 2 wyliczamy: rz = D/2, rw = rz - r. Do wyliczenia modułów Younga można wykorzytać arkuz kalkulacyjny programu Excel. Wyliczone wartości E wpiujemy w prawozdaniu, wraz z opiem poobu wykonania obliczeń. Intrukcja do ćwiczenia Sprężytość materiałów

4 5. Wyznaczenie modułu Younga materiałów, z których wykonane ą badane pręty. Podobnie jak to było w przypadku rurki, prawo Hooke a obowiązuje również przy ugięciu pręta, a więc ~ F, związek funkcyjny między tymi wielkościami wyrażony jet wzorem []: L E 2 r F [] W pkt.. wykonane zotały wykrey zależności od F i wyznaczone wpółczynniki regreji liniowej F dla wzytkich badanych obiektów z różnych materiałów. Wykorzytując te dane i wzór [] możemy wyliczyć ich moduł Younga wg wzoru []: E L 2 r [] Obliczenia wykonujemy jak w poprzednim punkcie, a wyliczone wartości E, wraz z opiem poobu wykonania obliczeń, wpiujemy do prawozdania. Formułujemy wnioki wynikające z porównania wyników wzytkich pomiarów. 6. Pomiar kręcenia kości. - Potępując wg intrukcji obługi Urządzenia do pomiaru prężytości zamocować kość w uchwytach do pomiaru kręceń, przy utawieniu ramienia dźwigni w górnej pozycji. - Sprawdzić czy włączone jet zailanie wzytkich urządzeń. - Uruchomić program Teting of elaticity i wykonać pomiar kąta kręcenia kości. Wyniki zapiać w folderze ćwiczenia założonym na dyku lokalnym D:\Temp. - Zaimportować wyniki pomiarów do programu Statitica (analogicznie jak w punkcie 2). - Przeliczyć otrzymane z programu wyniki pomiaru kąta wyrażone w topniach na radiany (przeliczenia dokonaj w nowej kolumnie (kolumna 6, zmienna Var6)). - Utworzyć wykre zależności kąta kręcenia kości (kolumna6, zmienna Var6) od działającego momentu iły (kolumna, zmienna Var). - Dopaować protą y = * x + A do wyników ekperymentalnych (lub części wykreu, dla której kąt kręcenia wzrata proporcjonalnie do momentu iły), odczytać parametry dopaowania protej: A [rad] i [N - m - ]. Wykre oraz wyniki dopaowania kopiować do prawozdania. Intrukcja do ćwiczenia Sprężytość materiałów

5 - Wyniki analizy wykonane w programie Statitica zapiać w folderze ćwiczenia. 7. Wyznaczenie modułu prężytości potaci G (modułu Kirchhoffa) kości. Moment ił działających na kość powoduje jej kręcenie o kąt. Zgodnie z prawem Hooke a dla małych odkztałceń ~ M i zależy od modułu prężytości potaci G kości. Dla rurki o długości L, średnicy zewnętrznej D i grubości ścianki r, kąt kręcenia można wyznaczyć ze wzoru [5]: M L [5] D r G W punkcie 6 uzykano wartość wpółczynnika regreji liniowej Po przekztałceniu wzoru [5] oraz wykorzytując zmierzone w punkcie parametry geometryczne kości (średnie wartości r i D) i wyznaczony w punkcie 6 wpółczynnik regreji liniowej ze wzoru [6]: M, możemy wyliczyć wartość modułu prężytości potaci G dla badanej kości M. G L D r [6] Do wyliczenia modułu prężytości potaci kości można wykorzytać arkuz kalkulacyjny programu Excel. Wyliczoną wartość G wpiujemy do prawozdania. 8. Wyznaczenie wpółczynnika Poiona dla kości. Znając wartości modułu Younga E i modułu prężytości potaci G dla badanej kości możemy wyliczyć wpółczynnik Poiona wg wzoru [7]: E 2G [7] Podumowanie ćwiczenia, polega na porównaniu parametrów określających właności prężyte materiałów i krótkiej analizie dotyczącej ich ewentualnego zatoowania w praktyce medycznej lub tomatologicznej. Intrukcja do ćwiczenia Sprężytość materiałów 5

6 UWAGA: Wzytkie wyniki pomiarów i analiz zapiane wcześniej na dyku lokalnym D:\Temp należy kopiować na dyk ieciowy U:, a natępnie uunąć je z dyku lokalnego. IV. Sprawozdanie (zablon prezytoc.dotx) Sprawozdanie powinno zawierać:. Wykrey zależności trzałki ugięcia kości i innych zadanych do analizy obiektów od przyłożonej iły oraz wyniki dopaowania protej. 2. Obliczenia (w przypadku korzytania z programu Excel należy je kopiować) i wyznaczone wartości modułów prężytości E wzytkich zbadanych materiałów oraz wynikające z ich porównania wnioki.. Wykre zależności kąta kręcenia kości od przyłożonego momentu iły, wyniki dopaowania protej i wyznaczony moduł prężytości potaci G dla kości, jej wpółczynnik Poiona i wnioki.. Ocenę użyteczności zbadanych materiałów dla celów medycznych i tomatologicznych pod kątem ich właności prężytych. V. Intrukcje. Intrukcja obługi Urządzenia do pomiaru prężytości. 2. Intrukcja programu Teting of elaticity.. Intrukcja obługi programu Statitica. Intrukcja do ćwiczenia Sprężytość materiałów 6

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

Analiza osiadania pojedynczego pala

Analiza osiadania pojedynczego pala Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5

Bardziej szczegółowo

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji Akademia Górniczo-Hutnicza Kraków Katedra Wytrzymałości, Zmęczenia Materiałów i Kontrukcji KWZMiK Ćwiczenia laboratoryjne Badanie jednorodności truktury i właności mechanicznych materiałów kontrukcyjnych

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 8 Aktualizacja: 02/2016 Analiza tateczności zbocza Program powiązany: Stateczność zbocza Plik powiązany: Demo_manual_08.gt Niniejzy rozdział przedtawia problematykę prawdzania tateczności

Bardziej szczegółowo

Współczesne metody badań i przetwórstwa materiałów polimerowych

Współczesne metody badań i przetwórstwa materiałów polimerowych Wpółczene metody badań i przetwórtwa materiałów polimerowych Określanie parametrów wytłaczania ze tatytycznym opracowaniem wyników Nr ćwiczenia: 1 Zapoznać ię z kontrolą podtawowych parametrów fizycznych

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI

ĆWICZENIE A2 INSTRUKCJA OBSŁUGI ĆWICZENIE A2 INSTRUKCJA OBSŁUGI 1. Oględziny zewnętrzne tanowika: dane ilnika (dla połączenia w gwiazdę): typ Sg90L6, nr fabr. CL805351, P n =1,1kW, n n =925obr/min, U n =230/400V, I n =5,1/2,9A, coϕ n

Bardziej szczegółowo

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

( L ) I. Zagadnienia. II. Zadania

( L ) I. Zagadnienia. II. Zadania ( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika Śląka w Gliwicach Intytut Mazyn i Urządzeń Energetycznych Zakład Podtaw Kontrukcji i Ekploatacji Mazyn Energetycznych Ćwiczenie laboratoryjne z wytrzymałości materiałów Temat ćwiczenia: Wyboczenie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Eektryczny, Katedra Mazyn, Napędów i Pomiarów Eektrycznych Laboratorium Przetwarzania i Anaizy Sygnałów Eektrycznych (bud A5, aa 310) Intrukcja da tudentów kierunku Automatyka i obotyka do zajęć

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu. Pomiar rezytancji. 1. Cel ćwiczenia: Celem ćwiczenia jet zapoznanie ię z najważniejzymi metodami pomiaru rezytancji, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N LBORTORM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH ĆWCZENE 1 CHRKTERYSTYK STTYCZNE DOD P-N K T E D R S Y S T E M Ó W M K R O E L E K T R O N C Z N Y C H 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1.

POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. I. Cel ćwiczenia: POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić jego podstawowe parametry 2. Dokonać pomiaru grubości zęba suwmiarką modułową lub

Bardziej szczegółowo

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE Szybkobieżne Pojazdy Gąienicowe (19) nr 1, 2004 Zbigniew RACZYŃSKI Jacek SPAŁEK DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

Implementacja charakterystyk czujników w podwójnie logarytmicznym układzie współrzędnych w systemach mikroprocesorowych

Implementacja charakterystyk czujników w podwójnie logarytmicznym układzie współrzędnych w systemach mikroprocesorowych Implementacja charakterytyk czujników w podwójnie logarytmicznym układzie wpółrzędnych w ytemach mikroproceorowych Wzelkiego rodzaju czujniki wielkości nieelektrycznych tanowią łakomy kąek nawet dla mało

Bardziej szczegółowo

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami tatycznych charakterytyk prądowo-napięciowych diod półprzewodnikowych protowniczych, przełączających i elektroluminecencyjnych, metodami pomiaru

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa

Bardziej szczegółowo

Badanie ugięcia belki

Badanie ugięcia belki Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie

Bardziej szczegółowo

Cel i zakres ćwiczenia

Cel i zakres ćwiczenia MIKROMECHANIZMY I MIKRONAPĘDY 2 - laboratorium Ćwiczenie nr 5 Druk 3D oraz charakteryzacja mikrosystemu Cel i zakres ćwiczenia Celem ćwiczenia jest charakteryzacja geometryczna wykonanego w ćwiczeniu 1

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny 0/0/ : / Ćw.. Wyznaczanie stałej sprężystości sprężyny Ćw.. Wyznaczanie stałej sprężystości sprężyny. Cel ćwiczenia Sprawdzenie doświadczalne wzoru na siłę sprężystą $F = -kx$ i wyznaczenie stałej sprężystości

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

Metodyka szacowania niepewności w programie EMISJA

Metodyka szacowania niepewności w programie EMISJA mgr inż. Ryzard Samoć rzeczoznawca Minitra Ochrony Środowika Zaobów Naturalnych i Leśnictwa nr. 556 6-800 Kaliz, ul. Biernackiego 8 tel. (0-6) 7573-987, 766-39 Metodyka zacowania niepewności w programie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Badanie wyładowań ślizgowych

Badanie wyładowań ślizgowych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do

Bardziej szczegółowo

BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW EKSPLOATACJI GÓRNICZEJ**

BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW EKSPLOATACJI GÓRNICZEJ** Górnictwo i Geoinżynieria Rok 31 Zezyt 3 2007 Andrzej Wichur*, Kornel Frydrych*, Agniezka Zięba* BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW

Bardziej szczegółowo

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania Robert Gabor Laboratorim Metod Badania Materiałów Statyczna próba rozciągania Więcej na: www.tremolo.prv.pl, www.tremolo.pl dział laboratoria 1 CZĘŚĆ TEORETYCZNA Statyczna próba rozciągania ocenia właściwości

Bardziej szczegółowo

( F ) I. Zagadnienia. II. Zadania

( F ) I. Zagadnienia. II. Zadania ( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd

Bardziej szczegółowo

Badanie wyładowań ślizgowych

Badanie wyładowań ślizgowych POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wyładowań ślizgowych Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn

Bardziej szczegółowo

Statyczna próba rozciągania - Adam Zaborski

Statyczna próba rozciągania - Adam Zaborski Statyczna próba rozciągania PN/H-431 Próbki okrągłe: proporcjonalne (5-cio, 1-ciokrotne), nieproporcjonalne płaskie: z główkami (wiosełkowe), bez główek próbka okrągła dziesięciokrotna Określane wielkości

Bardziej szczegółowo

Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych. Politechnika Wrocławska

Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych. Politechnika Wrocławska Zakład Podstaw Konstrukcji i Maszyn Przepływowych Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych Politechnika Wrocławska Wydział Mechaniczno-Energetyczny INSTRUKCJA 3.b. WPŁYW ŚREDNICY

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3 Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE koina talowego H opartego na trójnogu MPGK Kraono I. Dane geoetryczne koina: H H npt D z g i : - wyokość całkowita :. - pozio pierścienia trójnogu :. - wyokość podtawy

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian 3. (poziom podtawowy) Rozwiązania zadań Zadanie 1. (1 pkt) III.1.5. Uczeń oblicza wartości niekomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-szeregowe prędkością ruchu odbiornika hydraulicznego

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-szeregowe prędkością ruchu odbiornika hydraulicznego Intrukcja do ćwiczeń laboratoryjnych Sterowanie dławieniowe-zeregowe prędkością ruchu odbiornika hydraulicznego Wtęp teoretyczny Prędkość ilnika hydrotatycznego lub iłownika zależy od kierowanego do niego

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU ĆWICZENIE 76 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU Cel ćwiczenia: pomiar kąta łamiącego i kąta minimalnego odchylenia pryzmatu, wyznaczenie wpółczynnika załamania zkła w funkcji

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA Arkuz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Organizacja i prowadzenie ekploatacji złóż metodą odkrywkową Oznaczenie kwalifikacji:

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

Pomiar siły parcie na powierzchnie płaską

Pomiar siły parcie na powierzchnie płaską Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami

Bardziej szczegółowo