Wymagania edukacyjne z matematyki
|
|
- Edward Wróbel
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są niezbędne do zrozumieni mteriłu z wyższych poziomów. Stnowią one swego rodzju podstwę, bez której dlsz nuk jest brdzo utrudnion. Zgdnieni te powinny być opnowne przez kżdego uczni. Wymgni z poziomu podstwowego (P) to wymgni z poziomu (K) rozszerzone jedynie o typowe zstosowni przyswojonego mteriłu. Widomości i umiejętności z zkresu wymgń rozszerzjących (R) zwierją wymgni z poziomu (K) i (P) rozszerzone o zdni trudniejsze lub tkie, w których nleży w nietypowy sposób zstosowć nbytą wiedzę. Wymgni z poziomu dopełnijącego (D) zwierją wymgni z poziomów poprzednich uzupełnione zgdnienimi złożonymi, w których rozwiąznie jest możliwe dzięki zstosowniu nbytej wiedzy w nietypowy sposób. to wiedz i umiejętności wykrczjące poz obowiązkowy progrm relizowny w dnej klsie. Wymgni te są szczególnie trudne i złożone. PLANIMETRIA rozróżni trójkąty: ostrokątne, prostokątne, rozwrtokątne; stosuje twierdzenie o sumie mir kątów w trójkącie; sprwdz, czy z trzech odcinków o dnych długościch możn zbudowć trójkąt; uzsdni przystwnie trójkątów, wykorzystując cechy przystwni; wykorzystuje cechy przystwni trójkątów do rozwiązywni prostych zdń; uzsdni podobieństwo trójkątów, wykorzystując cechy podobieństw; zpisuje proporcje boków w trójkątch podobnych; wykorzystuje podobieństwo trójkątów do rozwiązywni elementrnych zdń; sprwdz, czy dne figury są podobne; oblicz długości boków figur podobnych; stosuje w zdnich twierdzenie o stosunku pól figur podobnych; wskzuje w wielokątch odcinki proporcjonlne; stosuje twierdzenie Pitgors; wykorzystuje wzory n przekątną kwdrtu i wysokość trójkąt równobocznego; wykorzystuje włsność trójkąt prostokątnego o kątch 30º, 60º, 90º; oblicz wrtości funkcji trygonometrycznych kąt ostrego w trójkącie prostokątnym, gdy dne są boki tego trójkąt; rozwiązuje trójkąty prostokątne; podje wrtości funkcji trygonometrycznych kątów 30º, 45º, 60º; odczytuje z tblic wrtości funkcji trygonometrycznych dnego kąt ostrego; znjduje w tblicch kąt ostry, gdy zn wrtość jego funkcji trygonometrycznej;
2 oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny sinus lub cosinus kąt; podje związki między funkcjmi trygonometrycznymi tego smego kąt; 1 stosuje w zdnich wzór n pole trójkąt: P h orz wzór n pole trójkąt równobocznego o boku : P ; 4 rozróżni czworokąty: kwdrt, prostokąt, romb, równoległobok, trpez orz zn ich włsności; wykorzystuje w zdnich wzory n pol czworokątów; wykorzystuje funkcje trygonometryczne do obliczni obwodów i pól podstwowych figur płskich; Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: przeprowdz dowód twierdzeni o sumie mir kątów w trójkącie; stosuje cechy przystwni trójkątów do rozwiązywni trudniejszych zdń geometrycznych; wykorzystuje podobieństwo trójkątów do rozwiązywni prktycznych problemów; wyprowdz wzór n jedynkę trygonometryczną orz pozostłe związki między funkcjmi trygonometrycznymi tego smego kąt; przeksztłc wyrżeni trygonometryczne, stosując związki między funkcjmi trygonometrycznymi tego smego kąt; oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny tngens lub cotngens kąt; 1 stosuje podczs rozwiązywni zdń wzór n pole trójkąt P b sin ; 2 Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: przeprowdz dowód twierdzeni Pitgors; stosuje twierdzeni o związkch mirowych podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu; stosuje włsności podobieństw figur podczs rozwiązywni zdń problemowych orz zdń wymgjących przeprowdzeni dowodu; stosuje włsności czworokątów podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu; rozwiązuje zdni o zncznym stopniu trudności dotyczące przystwni i podobieństw figur orz związków mirowych z zstosowniem trygonometrii; GEOMETRIA ANALITYCZNA oblicz odległość punktów w ukłdzie współrzędnych; wyzncz współrzędne środk odcink, mjąc dne współrzędne jego końców; stosuje wzory n odległość między punktmi i środek odcink do rozwiązywni zdń dotyczących równoległoboków;
3 wyzncz współrzędne punktów w dnej symetrii osiowej lub środkowej; rozpoznje figury osiowosymetryczne i środkowosymetryczne; znjduje obrzy niektórych figur geometrycznych (punktu, prostej, odcink, okręgu, trójkąt) w symetrii osiowej względem osi ukłdu współrzędnych i symetrii środkowej względem początku ukłdu współrzędnych; oblicz odległość punktu od prostej; wyzncz środek i promień okręgu, mjąc jego równnie; opisuje równniem okrąg o dnym środku i przechodzący przez dny punkt; Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: stosuje włsności stycznej do okręgu do rozwiązywni zdń; stosuje wzory n odległość między punktmi i środek odcink do rozwiązywni zdń dotyczących równoległoboków; sprwdz, czy dne równnie jest równniem okręgu; wyzncz wrtość prmetru tk, by równnie opisywło okrąg; stosuje równnie okręgu w zdnich; Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: wyprowdz wzór n odległość punktu od prostej; rozwiązuje zdni z geometrii nlitycznej o zncznym stopniu trudności; WIELOMIANY podje przykłdy wielominów, określ ich stopień i podje wrtości ich współczynników; zpisuje wielomin w sposób uporządkowny; oblicz wrtość wielominu dl dnego rgumentu; sprwdz, czy dny punkt nleży do wykresu dnego wielominu; wyzncz sumę, różnicę, iloczyn wielominów i określ ich stopień; określ stopień iloczynu wielominów bez wykonywni mnożeni; podje współczynnik przy njwyższej potędze orz wyrz wolny iloczynu wielominów bez wykonywni mnożeni wielominów; stosuje wzory skróconego mnożeni n kwdrt sumy i różnicy orz wzór n różnicę kwdrtów do wykonywni dziłń n wielominch orz do rozkłdu wielominu n czynniki; rozkłd wielomin n czynniki, stosując metodę wyłączni wspólnego czynnik poz nwis; rozwiązuje równni wielominowe; Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wiedzę i umiejętności z poziomów (K) i (P) orz dodtkowo:
4 wyzncz współczynniki wielominu, mjąc dne wrunki; stosuje wielominy wielu zmiennych w zdnich różnych typów; rozkłd wielomin n czynniki możliwie njniższego stopni, tkże z zstosowniem wzorów n sumę i różnicę sześcinów; stosuje rozkłd wielominu n czynniki w zdnich różnych typów; nlizuje i stosuje metodę podną w przykłdzie, by rozłożyć dny wielomin n czynniki; porównuje wielominy; rozwiązuje trudniejsze równni wielominowe; opisuje z pomocą wielominu objętość lub pole powierzchni bryły orz określ dziedzinę powstłej w ten sposób funkcji; Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące wielominów; FUNKCJE WYMIERNE wskzuje wielkości odwrotnie proporcjonlne i stosuje tką zleżność do rozwiązywni prostych zdń; szkicuje wykres funkcji f x) x wrtości, przedziły monotoniczności); szkicuje wykresy funkcji (, gdzie 0 i podje jej włsności (dziedzinę, zbiór f ( x) q i x zbiór wrtości, przedziły monotoniczności); f x) x p ( i podje ich włsności (dziedzinę, wyzncz symptoty wykresów powyższych funkcji; wyzncz dziedzinę wyrżeni wymiernego; oblicz wrtość wyrżeni wymiernego dl dnej wrtości zmiennej; skrc i rozszerz wyrżeni wymierne; wykonuje dziłni n wyrżenich wymiernych w prostych przypdkch i podje odpowiednie złożeni; rozwiązuje proste równni wymierne prowdzące do rozwiązywni równń liniowych lub kwdrtowych; wykorzystuje wyrżeni wymierne do rozwiązywni prostych zdń tekstowych; Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wiedzę i umiejętności z poziomów (K) i (P) orz dodtkowo: rozwiązuje zdni tekstowe, stosując proporcjonlność odwrotną; dobier wzór funkcji postci f ( x) q i x f x) x p ( do dnego wykresu i określ jej włsności; wykonuje dziłni n wyrżenich wymiernych i podje odpowiednie złożeni;
5 przeksztłc wzory, stosując dziłni n wyrżenich wymiernych; rozwiązuje równni wymierne prowdzące do rozwiązywni równń kwdrtowych; wykorzystuje wyrżeni wymierne do rozwiązywni trudniejszych zdń tekstowych; Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące wyrżeń wymiernych; CIĄGI wyzncz kolejne wyrzy ciągu, gdy dnych jest kilk jego początkowych wyrzów; wyzncz wyrzy ciągu opisnego słownie; szkicuje wykres ciągu; wyzncz wzór ogólny ciągu, mjąc dnych kilk jego początkowych wyrzów; wyzncz początkowe wyrzy ciągu określonego wzorem ogólnym; wskzuje, które wyrzy ciągu przyjmują dną wrtość; podje przykłdy ciągów monotonicznych, których wyrzy spełniją dne wrunki; mjąc dne kolejne wyrzy ciągu, uzsdni, że dny ciąg nie jest monotoniczny; wyzncz wyrz n 1 ciągu określonego wzorem ogólnym; podje przykłdy ciągów rytmetycznych; zn włsności ciągu rytmetycznego i wykorzystuje je w zdnich; wyzncz wyrzy ciągu rytmetycznego, mjąc dne pierwszy wyrz i różnicę; wyzncz wzór ogólny ciągu rytmetycznego, mjąc dne dowolne dw jego wyrzy; sprwdz, w prostych przypdkch, czy dny ciąg jest rytmetyczny; wyzncz wzór ogólny ciągu rytmetycznego, mjąc dw punkty nleżące do jego wykresu; oblicz sumę n początkowych wyrzów ciągu rytmetycznego; podje przykłdy ciągów geometrycznych; zn włsności ciągu geometrycznego i wykorzystuje je w zdnich; wyzncz wyrzy ciągu geometrycznego, mjąc dne pierwszy wyrz i ilorz; wyzncz wzór ogólny ciągu geometrycznego, mjąc dne dowolne dw jego wyrzy; sprwdz, w prostych przypdkch, czy dny ciąg jest geometryczny; oblicz sumę n początkowych wyrzów ciągu geometrycznego; oblicz wysokość kpitłu przy różnym okresie kpitlizcji; oblicz oprocentownie lokty w prostych sytucjch; Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wiedzę i umiejętności z poziomów (K) i (P) orz dodtkowo: wyzncz wzór ogólny ciągu spełnijącego podne wrunki; bd monotoniczność ciągów; sprwdz, w trudniejszych przypdkch, czy dny ciąg jest rytmetyczny;
6 sprwdz, w trudniejszych przypdkch, czy dny ciąg jest geometryczny; stosuje wzory n n-ty wyrz orz sumę n początkowych wyrzów ciągu rytmetycznego i ciągu geometrycznego do rozwiązywni zdń; stosuje średnią geometryczną do rozwiązywni zdń; określ monotoniczność ciągu geometrycznego; rozwiązuje zdni związne z kredytmi, dotyczące okresu oszczędzni i wysokości oprocentowni w trudniejszych przypdkch; stosuje włsności ciągu rytmetycznego i geometrycznego do rozwiązywni zdń umieszczonych w kontekście prktycznym; Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące ciągów;
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć
Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy
Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy
Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.
Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.
Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyk 2 Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Kls 2 Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,
Wymagania edukacyjne z matematyki dla klasy II a liceum (poziom podstawowy) na rok szkolny 2018/2019
Wymgni edukcyjne z mtemtyki dl klsy II liceum (poziom podstwowy) n rok szkolny 08/09 Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
MATeMAtyka 2. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyk Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Kls technikum Przedmiotowy system ocenini wrz wymgnimi edukcyjnymi Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące (W). Wymienione
Plan wynikowy klasa 2. Zakres podstawowy
Pln wynikowy kls Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY ALGEBRAICZNE 0. Sumy
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
Załącznik nr 3 do PSO z matematyki
Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących
MATeMAtyka 1-3 zakres podstawowy
MATeMAtyk 1-3 zkres podstwowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych ( N podstwie przedmiotowego systemy ocenini wrz z określeniem wymgń edukcyjnych oprcownego przez Dorotę Ponczek
Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
Pogrubieniem oznczono wymgni, które wykrczją poz podstwę progrmową dl zkresu podstwowego. 1. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile. LICZBY RZECZYWISTE Kl. I poziom podstwowy podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych
Wymagania edukacyjne z matematyki. Klasa IIC. Rok szkolny 2013/2014. Poziom rozszerzony
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz
PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2017/18
Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY
. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności
Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2
Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2016/17
Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II
1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III ZAKRES PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA prowdzi proste rozumownie skłdjące się z niewielkiej liczby kroków prowdzi rozumownie z wykorzystniem wzorów
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej
1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie
Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące
Matematyka Wymagania edukacyjne na poszczególne oceny
Mtemtyk Wymgni edukcyjne n poszczególne oceny KLASA II - POZIOM PODSTAWOWY SUMY ALGEBRAICZNE Dopuszczjąc rozpoznje jednominy i sumy lgebriczne; oblicz wrtości liczbowe wyrżeń lgebricznych, redukuje wyrzy
Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu
Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony I okres Plnimetri uzupełnienie z klsy I klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Wymagania edukacyjne z matematyki
Liceum Ogólnoksztłcące im. Bolesłw Prus w Skierniewicch Wymgni edukcyjne z mtemtyki w klsie pierwszej, drugiej i trzeciej po gimnzjum zkres podstwowy Rok szkolny: 2019/2020 Klsy: 1f, 1j, 1k, 2, 2d, 2e,
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
WYMAGANIA PROGRAMOWE Z MATEMATYKI W ZAKRESIE PODSTAWOWYM DLA TRZYLETNIEGO LICEUM OGÓLNOKSZTAŁCĄCEGO ORAZ CZTEROLETNIEGO TECHNIKUM W ZESPOLE SZKÓŁ NR IM. MARII SKŁODOWSKIEJ-CURIE W WYSZKOWIE Wyróżnione
MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu
MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Wymagania edukacyjne z matematyki
Liceum Ogólnoksztłcące im. Bolesłw Prus w Skierniewicch Wymgni edukcyjne z mtemtyki w klsie pierwszej, drugiej i trzeciej po gimnzjum zkres podstwowy Rok szkolny: 2019/2020 Klsy: 1f, 1j, 1k, 2, 2d, 2e,
Wymagania edukacyjne zakres podstawowy
Złącznik nr 3 do PSO z mtemtyki, ZSP Nr 1 w Krośnie. Wymgni edukcyjne zkres podstwowy Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących swego
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz progrm nuczni (W). Wymienione poziomy wymgń odpowidją w przybliżeniu ocenom
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO
WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni
Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa
Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik
FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1
FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5
Zakres na egzaminy poprawkowe w r. szk. 2012/13
Zkres n egzminy poprwkowe w r. szk. 2012/13 /nuczyciel M.Ttr/ MATEMATYKA Kls II ZAKRES PODSTAWOWY Dził progrmu I. Plnimetri, cz. 1 Temt 1. Podstwowe pojęci geometryczne 2. Współliniowość punktów. Nierówność
Wymagania na poszczególne oceny dla Technikum
Wymgni n poszczególne oceny dl Technikum Cły cykl ksztłceni: od I do IV ocen dopuszczjąc: Przedmiot: MATEMATYKA podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych
f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.
FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln
Stopień celujący otrzymuje uczeń, który otrzymał stopień bardzo dobry i rozwiązał zadanie wskazane jako dodatkowe.
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI 50 1. Oceny bieżące, oceny klsyfikcyjne, śródroczne i oceny klsyfikcyjne roczne ustl się w stopnich według nstępującej skli: 1) stopień celujący 6 2) stopień
Matematyka Wymagania edukacyjne na poszczególne oceny
Mtemtyk Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony Plnimetri klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych trójkąt do rozwiązywni
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III ZAKRES PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA prowdzi rozumownie skłdjące się z niewielkiej liczby kroków z wykorzystniem wzorów skróconego mnożeni - dowodzi
szkicuje wykresy funkcji: f ( x)
Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci
PRZEDMIOTOWY SYSTEM OCENIANIA I KRYTERIA WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI
IV Liceum Ogólnoksztłcące im. Fryderyk Chopin w Ostrowie Wielkopolskim PRZEDMIOTOWY SYSTEM OCENIANIA I KRYTERIA WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI I. Formy sprwdzni wiedzy i umiejętności Weryfikcj zdobytej
WEWNĄTRZSZKOLNE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE
WEWNĄTRZSZKOLNE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Bczyńskiego W WARSZAWIE I. Wewnątrzszkolne Zsdy Ocenini z mtemtyki są zgodne z Wewnątrzszkolnym Oceniniem (WO) w ZESPOLE SZKÓŁ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kmienn Gór tel.: (+48) 75-645-01-82 f: (+48) 75-645-01-83 E-mil: zso@kmienn-gor.pl WWW: http://www.zso.kmienn-gor.pl PRZEDMIOTOWY SYSTEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz progrm nuczni (W). Wymgni konieczne (K)
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2017/2018. Kryteria oceny
Wymgni progrmowe n poszczególne oceny w klsie I A LP, I B LP 07/08 Przygotowne w oprciu o propozycję Wydwnictw Now Er Kryteri oceny Znjomość pojęć, definicji, włsności orz wzorów objętych progrmem nuczni.
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE
I. PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Bczyńskiego W WARSZAWIE Przedmiot - mtemtyk Klsy: wszystkie Nuczyciele - mgr Mriol Olszewsk, mgr Ann Szulc, mgr Justyn Bunr,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (135 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (135 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kmienn Gór tel.: (+48) 75-645-01-82 fx: (+48) 75-645-01-83 E-mil: zso@kmienn-gor.pl WWW: http://www.zso.kmienn-gor.pl PRZEDMIOTOWY SYSTEM
Szczegółowe wymagania edukacyjne z matematyki klasa 2c- poziom rozszerzony
Szczegółowe wymgni edukcyjne z mtemtyki kls 2c- poziom rozszerzony Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
Matematyka. Zakres materiału i wymagania edukacyjne, KLASA DRUGA A
Mtemtyk Zkres mteriłu i wymgni edukcyjne, KLASA DRUGA A FUNKCJA LINIOWA 1. Sposoby opisu funkcji definicj funkcji sposoby opisywni funkcji stosuje pojęci: funkcj, rgument, dziedzin, wrtość funkcji, wykres
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie
Dział programowy: LICZBY RZECZYWISTE
Ksztłcenie ogólne w zkresie podstwowym Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć edukcyjnych oprcowne n podstwie przedmiotowego
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy. 1.Liczby rzeczywiste
Wymgni edukcyjne mtemtyk kls 1 zkres podstwowy 1.Liczby rzeczywiste 1. Podwnie przykłdów liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz rozpoznwnie liczb wymiernych
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZAKRESIE PODSTAWOWYM
NAUCZYCIEL KARINA SURMA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZAKRESIE PODSTAWOWYM KONTRAKT Zsdy ocenini 1. Oceniniu podlegją nstępujące formy ktywności uczni: prce klsowe, sprwdziny, testy, odpowiedzi
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Plan wynikowy z matematyki
ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni
Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.
Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
1. PLANIMETRIA 1. Miary kątów w trójkącie klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie
Rok szkolny 2018/19 kls 2iA, 2bA WYMAGANIA EDUACYJNE Z MATEMATYI LASA II ZARES ROZSZERZONY (90 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry);
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Wymagania edukacyjne z matematyki i zasady oceniania
rzedmiot ls Imię i Nzwisko nuczyciel Mtemtyk kl. 2 wa ZARES ODSTAWOWY I ROZSZERZONY Mirosłw Jursz Wymgni edukcyjne z mtemtyki i zsdy ocenini 1. W roku szkolnym 2019/2020 w klsie 2wA stosuje się średnią
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (90 godz.)
l. ib WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (90 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
Przedmiot Klasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 3 GI ZAKRES PODSTAWOWY I ROZSZERZONY Mirosława Jursza
Przedmiot ls Imię i Nzwisko nuczyciel Mtemtyk kl. 3 GI ZARES PODSTAWOWY I ROZSZERZONY Mirosłw Jursz Rok szkolny 2018/2019 Autorzy: Dorot Ponczek, rolin Wej -ocen dopuszczjąc- wymgni n poziomie koniecznym
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę