Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
|
|
- Judyta Michałowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr Joanna Trzęsiok Katowice, 24 czerwca 2014 r.
2 Plan 1 Szeregi czasowe 2 Przyrosty absolutne 3 Indeksy indywidualne 4 Indeksy agregatowe 5 Funkcja trendu
3 Badanie dynamiki zjawisk Prowadząc badania dostajemy często dane przedstawiające zmiany (rozwój) badanego zjawiska w czasie. Dane te można przedstawić w postaci szeregu czasowego. Szereg czasowy to ciąg {y t } wartości badanego zjawiska obserwowanego w kolejnych jednostkach czasu t n y t y 1 y 2 y 3... y n gdzie t czas, y t wielkość badanego zjawiska w okresie lub momencie t.
4 Rodzaje szeregów czasowych Wyróżniamy dwa rodzaje szeregów czasowych: szereg czasowy momentów, gdy badane wielkości podawane są na ściśle określony moment (np. stan ludności Polski na 31.XII w latach ); szereg czasowy okresów, zawiera informacje o rozmiarach zjawiska w ciągu kolejnych okresów danego przedziału czasowego (np. wydobycie węgla w Polsce w latach ).
5 Miary dynamiki zjawisk Analizę dynamiki zjawisk przeprowadzamy z wykorzystaniem miar dynamiki, do których zaliczamy: przyrosty absolutne i względne, indeksy (wskaźniki) indywidualne i agregatowe.
6 Przyrosty absolutne Przyrost absolutny y t to różnica w poziomie zjawiska zanotowanego w dwóch różnych okresach (momentach) t i t Wyróżniamy: y t = y t y t. przyrosty jednopodstawowe (o stałej podstawie), gdzie t = c jest pewnym okresem (momentem) podstawowym (bazowym) y t = y t y c, przyrosty łańcuchowe, gdzie t = t 1 to okres (moment) poprzedzający t y t = y t y t 1.
7 Indywidualne wskaźniki dynamiki Indeks indywidualny i t/t to stosunek poziomu zjawiska w okresie (momencie) badanym t do poziomu zjawiska w okresie (momencie) przyjętym za podstawę porównań t i t/t = y t. y t Indeksy indywidualne dotyczą zjawisk jednorodnych ujętych w prosty szereg dynamiczny.
8 Podział indeksów indywidualnych Wyróżniamy: indeksy jednopodstawowe (o stałej podstawie), gdzie t = c jest pewnym okresem (momentem) podstawowym (bazowym) i t/c = y t y c, indeksy łańcuchowe, gdzie t = t 1 to okres (moment) poprzedzający t i t/t 1 = y t. y t 1
9 Interpretacja indeksów Interpretacja indeksu i Indeks i mówi nam o procentowej zmianie badanego zjawiska o Zatem, jeśli (i 1) 100%. i > 1, to obserwujemy wzrost poziomu zjawiska w okresie badanym w porównaniu do bazowego o (i 1) 100%, i = 1, to obserwujemy brak zmian poziomu zjawiska w okresie badanym w porównaniu do bazowego, i < 1, to obserwujemy spadek poziomu zjawiska w okresie badanym w porównaniu do bazowego o (i 1) 100%.
10 Indeks średni i średnie tempo zmian Indeks średni Średnią z indeksów łańcuchowych obliczamy wykorzystując wzór na średnią geometryczną Można zauważyć, że ī = n 1 i 2/1 i 3/2... i n/n 1. y2 ī = n 1 y3 y n yn... = y 1 y 2 y n 1. n 1 y 1 Indeks średni interpretujemy jako średnie tempo zmian (ozn. T ) badanego zjawiska przypadające na jednostkę czasu T = (ī 1) 100%.
11 Agregatowe wskaźniki dynamiki dla wielkości absolutnych Indeksy agregatowe (zespołowe) stosujemy w odniesieniu do zjawisk złożonych, tj. zjawisk będących agregatami (zespołami) zjawisk niejednorodnych i bezpośrednio niesumowalnych. Wyróżniamy agregatowe indeksy (dla wielkości absolutnych): wartości, cen, ilości.
12 Agregatowy indeks wartości Agregatowy indeks wartości I w = w it w i0 = p it q it, p i0 q i0 gdzie w it, w i0 wartości produktu w okresie badanym i bazowym, p it, p i0 ceny produktu w okresie badanym i bazowym, q it, q i0 ilości produktu w okresie badanym i bazowym. Interpretacja: I w mówi nam o ile procent wzrosła lub spadła wartość badanego agregatu produktów. Zmiany procentowe obliczamy analogicznie, jak w przypadku indeksów indywidualnych: (I w 1) 100%.
13 Agregatowe indeksy cen Zmiana wartości sprzedaży agregatu produktów może wynikać ze zmiany cen tych produktów. Aby to zbadać obliczamy agregatowe indeksy cen, w których przyjmuje się, iż ilości produktów są na stałym poziomie. Agregatowy indeks cen o formule Laspeyresa, w którym ilości produktów ustalone są na poziomie bazowym (q 0 ) I p/q0 = p it q i0. p i0 q i0
14 Agregatowe indeksy cen (2) Agregatowy indeks cen o formule Paaschego, w którym ilości produktów ustalone są na poziomie badanym (q t ) I p/qt = p it q it. p i0 q it
15 Agregatowe indeksy ilości Zmiana wartości sprzedaży agregatu produktów może również wynikać ze zmiany ilości sprzedaży tych produktów. Obliczamy wtedy agregatowe indeksy ilości, w których przyjmuje się, iż ceny produktów są na stałym poziomie. Agregatowy indeks ilości o formule Laspeyresa, w którym ceny produktów ustalone są na poziomie bazowym (p 0 ) I q/p0 = p i0 q it. p i0 q i0
16 Agregatowe indeksy ilości (2) Agregatowy indeks ilości o formule Paaschego, w którym ceny produktów ustalone są na poziomie badanym (p t ) I q/pt = p it q it. p it q i0
17 Agregatowe indeksy Fishera Agregatowe indeksy Fishera to średnie geometryczne z indeksów (cen lub ilości) według formuł Laspeyresa i Paaschego. Agregatowy indeks cen Fishera Ip F = I p/q0 I p/qt. Agregatowy indeks ilości Fishera Iq F = I q/p0 I q/pt.
18 Zależności dla indeksów agregatowych Między agregatowymi indeksami cen, ilości i wartości zachodzą następujące związki: I w = I p/q0 I q/pt = I p/qt I q/p0 = I F p I F q. Relacje te wykorzystujemy do obliczania indeksów cen lub ilości metodą pośrednią, np.: I p/q0 = I w : I q/pt, I q/p0 = I w : I p/qt.
19 Agregatowe wskaźniki dynamiki dla wielkości stosunkowych Wielkość stosunkowa x to stosunek dwóch wielkości absolutnych x = a b. Przykładami wielkości stosunkowych są np.: przeciętna płaca, wydajność pracy, koszt jednostkowy, czy gęstość zaludnienia. Dla wielkości stosunkowych definiujemy: wszechstronny indeks agregatowy I x = X t X 0 = a it b it : a i0. b i0
20 Indeks wszechstronny Ponieważ, jeśli x = a b, to a = x b oraz b = a x, więc indeks wszechstronny I x można przedstawić za pomocą równoważnych formuł. Równoważne formuły dla indeksu wszechstronnego x it b it x i0 b i0 I x = b it : b i0 = a it a it x it : a i0 a i0 x i0 Interpretacja: indeks wszechstronny mówi nam o zmianach wielkości x w okresie t w stosunku do okresu 0..
21 Indeks agregatowy o stałej strukturze czynnika b Na zmiany wielkości x może wpływać zmiana struktury czynnika b. W analizie dynamiki x możemy ustalić b i w ten sposób zbadać faktyczne zmiany x z pominięciem b. Obliczamy wtedy agregatowe indeksy o stałej strukturze b. Agregatowy wskaźnik o stałej strukturze b o formule Laspeyresa ustalamy b na poziomie bazowym (b 0 ) I x/b0 = x it b i0 : b i0 x i0 b i0 b i0
22 Indeks agregatowy o stałej strukturze czynnika b (2) lub agregatowy wskaźnik o stałej strukturze b o formule Paaschego ustalamy b na poziomie badanym (b t ) I x/bt = x it b it : b it x i0 b it. b it
23 Indeks wpływu zmian w strukturze czynnika b Jeśli jednak chcemy poznać wpływ struktury czynnika b na dynamikę x, to możemy obliczyć agregatowy indeks wpływu zmian w strukturze czynnika b. Konstruujemy wtedy indeksy w których ustalamy wielkości stosunkowe x: indeks wpływu zmian w strukturze czynnika b o formule Laspeyresa, w którym ustalamy x na poziomie bazowym (x 0 ) bi x/x0 = x i0 b it : b it x i0 b i0 b i0
24 Indeks wpływu zmian w strukturze czynnika b (2) oraz indeks wpływu zmian w strukturze czynnika b o formule Paaschego, w którym ustalamy x na poziomie badanym (x t ) bi x/xt = x it b it : b it x it b i0 b i0
25 Zależności dla indeksów Między indeksem wszechstronnym, indeksem o stałej strukturze czynnika b oraz indeksem wpływu zmian w strukturze czynnika b istnieją następujące zależności: I x = I x/b0 b I x/xt oraz I x = I x/bt b I x/x0.
26 Indeks agregatowy o stałej strukturze czynnika a Analogicznie, na zmiany wielkości x może również wpływać zmiana struktury czynnika a. W analizie dynamiki x możemy ustalić a i w ten sposób zbadać faktyczne zmiany x z pominięciem a. Obliczamy wtedy agregatowe indeksy o stałej strukturze a. Agregatowy wskaźnik o stałej strukturze a o formule Laspeyresa ustalamy a na poziomie bazowym (a 0 ) I x/a0 = a i0 a i0 x it : a i0 a i0 x i0
27 Indeks agregatowy o stałej strukturze czynnika a (2) lub agregatowy wskaźnik o stałej strukturze a o formule Paaschego ustalamy a na poziomie badanym (a t ) I x/at = a it a it x it : a it a it x i0.
28 Indeks wpływu zmian w strukturze czynnika a Jeśli jednak chcemy poznać wpływ struktury czynnika a na dynamikę x, to możemy obliczyć agregatowy indeks wpływu zmian w strukturze czynnika a. Konstruujemy wtedy indeksy w których ustalamy wielkości stosunkowe x: indeks wpływu zmian w strukturze czynnika a o formule Laspeyresa, w którym ustalamy x na poziomie bazowym (x 0 ) ai x/x0 = a it : a it x i0 a i0 a i0 x i0
29 Indeks wpływu zmian w strukturze czynnika a (2) oraz indeks wpływu zmian w strukturze czynnika a o formule Paaschego, w którym ustalamy x na poziomie badanym (x t ) ai x/xt = a it a it x it : a i0. a i0 x it
30 Zależności dla indeksów Między indeksem wszechstronnym, indeksem o stałej strukturze czynnika a oraz indeksem wpływu zmian w strukturze czynnika a istnieją następujące zależności: I x = I x/a0 a I x/xt oraz I x = I x/at a I x/x0.
31 Przyczyny wpływające na rozwój zjawiska Zmiany wartości badanej cechy w czasie można przedstawić w postaci modelu uwzględniającego zarówno przyczyny działające w sposób trwały, jak również przypadkowy. W najbardziej ogólnym przypadku, na badane zjawisko oddziałują trzy grupy przyczyn: działające w sposób trwały i powodujące wystąpienie określonej tendencji rozwojowej (czyli trendu), powodujące zmiany powolne, systematyczne i ujawniające się w długich okresach czasu; działające okresowo ale regularnie, tzw. wahania sezonowe, często związane ze zjawiskami przyrodniczymi; działające przypadkowo i nieregularnie tzw. wahania przypadkowe.
32 Tendencja rozwojowa zjawiska Do najważniejszych badań szeregu czasowego (dynamicznego) zaliczamy szacowanie tendencji rozwojowej zjawiska, prowadzące do wyznaczenia funkcji trendu: y t = f (t) + z t, gdzie y t to zaobserwowany poziom zjawiska w okresie t, f (t) funkcja trendu, z t składnik resztowy.
33 Funkcja trendu Kształt funkcji trendu odzwierciedlającej działanie tzw. przyczyn głównych zależy od danych empirycznych. Może mieć ona postać: liniową: jak również nieliniową, np: f (t) = at + b, f (t) = at 2 + bt + c lub f (t) = a ln t + b.
34
35
36
37 Wyznaczanie trendu metodą najmniejszych kwadratów Wyznaczanie trendu metodą analityczną opiera się na tzw. metodzie najmniejszych kwadratów: N (y t f (t)) 2 min, t=1 w której szukamy takich parametrów funkcji f, które minimalizują sumę kwadratów różnic pomiędzy wartościami rzeczywistymi (y t ) badanego zjawiska a wartościami teoretycznymi (f (t)), obliczonymi na podstawie funkcji trendu.
38 Wyznaczanie parametrów trendu liniowego Jeśli funkcja trendu ma postać liniową: f (t) = at + b, to oszacowania jej parametrów obliczamy za pomocą wzorów (uzyskanych metodą najmniejszych kwadratów): a = cov(t, y t) S 2 (t) = N N N N y t t y t t t=1 t=1 t=1 ( N N ) 2, N t 2 t t=1 t=1 b = ȳ t a t.
39 Dopasowanie funkcji trendu Jakość dopasowania wyznaczonej funkcji trendu można zbadać za pomocą: odchylenia standardowego reszt N (y t f (t)) 2 t=1 s(z t ) =, N k gdzie k to liczba parametrów oszacowanego modelu; współczynnika zbieżności ϕ 2 = N (y t f (t)) 2 t=1 ; N (y t ȳ t ) 2 t=1
40 Dopasowanie funkcji trendu (2) współczynnika determinacji Uwaga. R 2 [0, 1], N (y t f (t)) 2 R 2 t=1 = 1 = 1 ϕ N 2. (y t ȳ t ) 2 t=1 im większe R 2 tym lepsze dopasowanie funkcji trendu do danych.
41 Prognoza i błąd standardowy prognozy Prognoza Znając parametry funkcji trendu możemy obliczać prognozowaną wartość badanego zjawiska dla przyszłych okresów (momentów) T : ŷ T = f (T ). Należy jednak pamiętać, że na badane zjawisko wpływają też inne przyczyny, więc otrzymana wielkość ŷ T jest obarczona pewnym błędem. Standardowy błąd prognozy s(z t ) N + (T t) 2. N (t t) 2 t=1
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47
Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
Analiza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41
Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Statystyka. Wykład 10. Magdalena Alama-Bućko. 15 maja Magdalena Alama-Bućko Statystyka 15 maja / 32
Statystyka Wykład 10 Magdalena Alama-Bućko 15 maja 2017 Magdalena Alama-Bućko Statystyka 15 maja 2017 1 / 32 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Statystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31
Statystyka Wykład 10 Magdalena Alama-Bućko 14 maja 2018 Magdalena Alama-Bućko Statystyka 14 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
STATYSTYKA. Na egzamin należy przynieść:
[1] STATYSTYKA Na egzamin należy przynieść: 1. kalkulator 2. wzory na kartce (bez komentarzy!!!) UWAGA!!! wzory muszą być napisane odręcznie (kserokopie będą zabierane) Na kolejnych stronach zamieszczono
O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW
Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana
Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku:
Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku: Kwota Liczba pożyczek pożyczki 0 4 0 4 8 8 12 40 12 16 16 Zbadać asymetrię rozkładu kwoty pożyczki w tym banku. Wynik
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr
SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Mieczysław Kowerski. Program Polska-Białoruś-Ukraina narzędziem konwergencji gospodarczej województwa lubelskiego
Mieczysław Kowerski Wyższa Szkoła Zarządzania i Administracji w Zamościu Program Polska-Białoruś-Ukraina narzędziem konwergencji gospodarczej województwa lubelskiego The Cross-border Cooperation Programme
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010
Analiza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Metody statystyki medycznej stosowane w badaniach klinicznych
Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90
Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci
Wykład 5: Analiza dynamiki szeregów czasowych
Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów
OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń
Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007
Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i
Statystyka opisowa SYLABUS A. Informacje ogólne
Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji
Ćwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
L.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4
ZADANA Zestaw 4 Zadanie 4. Na podstawie informacji o zyskach firmy podanych w tabeli: Lata 995 996 997 998 999 Zysk (w tys. zł) 5200 600 6500 6700 700 a) wyznaczyć ciąg przyrostów łańcuchowych (bezwzględnych
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Rachunki narodowe ćwiczenia, 2015
Obliczanie (zmian) wolumenów (na przykładzie PKB). Przykład opracowany na podstawie Understanding, ćwiczenie 3, str. 40. PKB, podobnie jak wiele innych wielkości makroekonomicznych, może być przedstawiany
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie
PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Ekonometryczna analiza popytu na wodę
Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.
Statystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31
Statystyka Wykład 11 Magdalena Alama-Bućko 21 maja 2018 Magdalena Alama-Bućko Statystyka 21 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym
Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej
Kod przedmiotu: PLPILA02-IEEKO-L-3p7-2012 Pozycja planu: B7 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu tatystyka opisowa 2 Rodzaj przedmiotu Podstawowy/Obowiązkowy 2 Kierunek studiów
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 429 EKONOMICZNE PROBLEMY TURYSTYKI NR 7 2006 RAFAŁ CZYŻYCKI, MARCIN HUNDERT, RAFAŁ KLÓSKA STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
ANALIZA PORÓWNAWCZA KONIUNKTURY WOJEWÓDZTW POLSKI W LATACH
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 318 2017 Uniwersytet Ekonomiczny w Katowicach Wydział Zarządzania Katedra Ekonometrii jozef.biolik@ue.katowice.pl
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Analiza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
FLESZ WRZESIEŃ Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ WRZESIEŃ 2018 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej
3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych
3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach 1995-2005 3.1. Opis danych statystycznych Badanie zmian w potencjale opieki zdrowotnej można przeprowadzić w oparciu o dane dotyczące
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
A.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Ćwiczenia, Makrokonomia II, 4/11 października 2017
Ćwiczenia, Makrokonomia II, 4/11 października 2017 1. W gospodarce zamkniętej Francia produkowane i konsumowane są trzy produkty: Camembert, bagietki i czerwone wino. W poniższej tabeli przedstawiono ceny
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym
Jacek Batóg Uniwersytet Szczeciński Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Warunki działania przedsiębiorstw oraz uzyskiwane przez
Co to jest analiza regresji?
Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu