DYNAMIKA SIŁA I JEJ CECHY
|
|
- Stanisława Lis
- 5 lat temu
- Przeglądów:
Transkrypt
1 DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia prosta, wzdłuż której działa siła) zwrot (jest wskazywany przez grot symbolu wektora, dla każdego kierunku można wyznaczyć dwa zwroty) Wektor można przedstawić graficznie: jako odcinek o odpowiedniej długości, na końcu którego zaznaczono grot. Siła to wielkość wektorowa, która jest miarą wzajemnego oddziaływania ciał. Siłę oznaczamy literą F. Jednostką siły jest niuton (1N). 1 N = kg m s 2 Do pomiaru siły używa się siłomierza. SIŁA WYPADKOWA I RÓWNOWAŻĄCA SIĘ Siła wypadkowa to siła, której działanie powoduje taki sam skutek jak działanie wszystkich zastąpionych przez nią sił (sił składowych). Kilka sił działających na ciało można zastąpić jedną siła (wypadkową), a skutek jej działania jest taki sam jak sił składowych. Składanie sił jest czynnością polegającą na wektorowym dodawaniu sił składowych i wyznaczeniu siły wypadkowej. F W = F 1 + F 2 Siła, która równoważy działanie jednej lub kilku sił, nosi nazwę siły równoważącej. W przypadku działania sił równoważących układ pozostaje w równowadze (wypadkowa sił wynosi 0) OBJAŚNIENIA Na jedno ciało może działać kilka sił. Siły te mogą mieć różne wartości, kierunki, zwroty i punkty przyłożenia. Aby określić jak będzie zachowywało się ciało pod wpływem działania tych sił, należy te siły w sposób wektorowy dodać do siebie. Podczas dodawania wektorów trzeba uwzględnić nie tylko ich wartości ale także kierunek i zwrot. Jeśli wektorowa suma sił działających na ciał jest równa zeru, oznacza to, że siły równoważą się, a ciało zachowuje się tak, jakby nie działały na nie żadne siły. Natomiast gdy siły się nie równoważą to w wyniku dodawania wektorowego otrzyma się siłę wypadkową, którą oznaczamy symbolem F W. Wyznaczanie siły wypadkowej nazywa się składaniem sił. Wypadkowa dwóch sił działających wydłuż tej samej prostej i mających zgodne zwroty ma kierunek i zwrot sił składowych, a jej wartość jest równa sumie wartości sił składowych. Wypadkowa dwóch sił o tym samym kierunku lecz przeciwnych zwrotach ma kierunek i zwrot siły większej, a wartość równą różnicy wartości tych sił. Wypadkowa dwóch sił o tym samym kierunku i tej samej wartości lecz przeciwnych zwrotach ma wartość równą 0, a ciało pod działaniem tych dwóch sił pozostaje w równowadze.
2 RODZAJE ODDZIAŁYWAŃ I ICH WZAJEMNOŚĆ Oddziaływanie to rodzaj działania, które występuje gdy przynajmniej dwa ciała mają na siebie jakiś wpływ. Oddziaływania mogą zachodzić między ciałami bezpośrednio stykającymi się (mechaniczne) lub na odległość między ciałami oddalonymi od siebie (np. grawitacyjne). W przyrodzie wyróżniamy 4 podstawowe rodzaje oddziaływań: grawitacyjne (zachodzi między ciałami mającymi masę, np. Słońcem, planetami, a także Ziemią i znajdującymi się na niej ciałami) magnetyczne (zachodzi pomiędzy ciałami mającymi właściwości magnetyczne, np. kiedy magnes przyciąga drobne żelazne lub stalowe przedmioty) elektrostatyczne(zachodzi pomiędzy ciałami naelektryzowanymi, np. pomiędzy naelektryzowaną linijką i skrawkami papieru) mechaniczne (sprężyste, zachodzi pomiędzy ciałami sprężystymi, które są w bezpośrednim kontakcie ze sobą, np. ściskanie sprężyny czy odbicie piłki). Oddziaływania grawitacyjne, magnetyczne i elektrostatyczne mogą zachodzić zarówno na odległość, jak i przy bezpośrednim kontakcie, natomiast oddziaływania mechaniczne zachodzą przy bezpośrednim kontakcie. Skutki oddziaływań ciał dzielimy na: Dynamiczne - skutkiem dynamicznym oddziaływania jest sytuacja, gdy w wyniku oddziaływania następuje zmiana prędkości ciała (np. startujący samolot). Statyczne - skutkiem statycznym oddziaływania jest sytuacja, gdy w wyniku oddziaływania następuje tylko zmiana kształtu ciała (np. stłuczony talerz). Wszystkie oddziaływania są wzajemne, to znaczy, że gdy jedno ciało działa na drugie, to drugie oddziałuje również na pierwsze. BEZWŁADNOŚĆ CIAŁA I PIERWSZA ZASADA DYNAMIKI NEWTONA Bezwładność (inercja) to zjawisko zachowania prędkości przez ciało, kiedy nie działają na nie żadne siły lub działające siły się równoważą. I zasada dynamiki Newtona (zwana też zasadą bezwładności) mówi, że jeśli na ciało nie działają żadne siły lub działające siły się równoważą, to ciało pozostaje w spoczynku, lub porusza się ruchem jednostajnym prostoliniowym. Do utrzymania ciała w ruchu nie jest konieczne ciągłe działanie siły. Pierwsza zasada dynamiki Newtona jest spełniona tylko w układach odniesienia, które same nie są przyspieszane. Zgodnie z pierwszą zasadą dynamiki działanie siły jest konieczne do tego aby trwał ruch. Z pierwszej zasady dynamiki wynika również, że każda zmiana prędkości oznacza, iż musiała zadziałać jakaś siła. Pierwsza zasada dynamiki nosi też nazwę zasady bezwładności. Można ją wyrazić w sposób potoczny, stwierdzając, że ciała niechętnie zmieniają swoją prędkość. Ta ich właściwość to BEZWŁADNOŚĆ. Mówiąc jeszcze inaczej bezwładność to opór ciała przed zmianą stanu ruchu. DRUGA ZASADA DYNAMIKI NEWTONA, WPŁYW SIŁ NA RUCH CIAŁA Masa to skalarna wielkość fizyczna, będąca miarą liczbową bezwładności ciała. II zasada dynamiki Newtona II zasada dynamiki mówi, że jeśli na ciało działa stała, niezrównoważona siła, to porusza się ono ruchem jednostajnie przyspieszonym, bądź jednostajnie opóźnionym (jeśli siła działa przeciwnie do kierunku
3 ruchu). Przyspieszenie, jakie ma wtedy ciało jest wprost proporcjonalne do działającej siły (im większa siła tym większe przyspieszenie) i odwrotnie proporcjonalne do masy ciała (im większa masa tym mniejsze przyspieszenie). Przyspieszenie ciał może być obliczone wzorem: a = F w m a przyspieszenie lub opóźnienie ciała [ m s 2 ] F w siła wypadkowa [N] m masa ciała [kg] Na podstawie tego wzoru możemy zdefiniować jednostkę siły: 1 Niuton jest to siła, jaka ciału o masie 1 kg nadaje przyspieszenie 1 m s 2 1N = 1kg 1 m s 2 Druga zasada dotyczy sytuacji kiedy wypadkowa sił działających na ciało nie jest równa zeru. Chcąc nadać ciału określone przyspieszenie lub opóźnienie (chcąc zmienić prędkość ruchu), trzeba na to ciało podziałać ściśle określoną siłą. Z drugiej zasady dynamiki wynika również, że przyspieszenie występuje tylko tak długo jak wypadkowa sił działających na ciało jest niezerowa. Przyspieszenie powodowane rzez dane siły jest proporcjonalne do siły wypadkowej. Z drugiej zasady dynamiki wynika również, że jeśli wypadkowe sił działających na ciała o różnych masach mają taką samą wartość, to wartość przyspieszenia jest odwrotnie proporcjonalna do masy tego ciała, na które działa. Im mniejsza masa tym mniejsza bezwładność ciała, czyli tym łatwiej zmienić jego prędkość, czyli nadać mu przyspieszenie. MASA A SIŁA CIĘŻKOŚCI Siła ciężkości (ciężar) to siła z jaką Ziemia (lub inne ciało kosmiczne) przyciąga ciała znajdujące się na swej powierzchni. Siła ciężkości jest wprost proporcjonalna do masy ciała. Współczynnik proporcjonalności pomiędzy masą a siłą ciężkości to przyspieszenie grawitacyjne. W przypadku ciał znajdujących się na powierzchni Ziemi przyspieszenie grawitacyjne nazywamy przyspieszeniem ziemskim. Masa ciała jest miarą ilości materii ciała fizycznego. Masa ciała nie zależy od miejsca w jakim się znajduje. Zgodnie z drugą zasadą dynamiki siłę ciężkości można zapisać następująco: F C = m g gdzie m masa ciała g przyspieszenie grawitacyjne na danej planecie (na Ziemi~10 m s 2 ) Siła ciężkości jest wielkością wektorową. Masę mierzymy wagą a siłę ciężkości siłomierzem. Na każde ciało znajdujące się w pobliżu naszej planety a w szczególności na jej powierzchni działa siła ciężkości. Sił ciężkości jest wielkością wektorową. SPADEK SWOBODNY Spadek swobodny to ruch jednostajnie przyspieszony ciała pod wpływem siły ciężkości (bez prędkości początkowej i uwzględniania oporów ruchu). Jeśli spadek jest swobodny, to czas spadania z zadanej wysokości nie zależy od masy spadającego ciała.
4 Prędkość osiągana przez ciało podczas spadania po czasie t: v = g t g przyspieszenie ziemskie g~10 m s 2 Czas spadania z wysokości h t = 2 h g TRZECIA ZASADA DYNAMIKI NEWTONA III zasada dynamiki (zwana też zasadą akcji reakcji) mówi, że jeśli jedno ciało działa na drugie pewną siłą, to drugie oddziałuje na pierwsze siłą o takim samym kierunku i wartości, lecz przeciwnym zwrocie. F BA = F AB gdzie F BA - siła pochodząca od ciała B i działająca na ciało A F AB - siła pochodząca od ciała A i działająca na ciało B Siły akcji i reakcji pochodzą od różnych ciał i działają na dwa różne ciała dlatego się nie równoważą Przykładem zastosowania III zasady dynamiki jest silnik odrzutowy. Silnik wyrzuca z dużą prędkością gazy, a te pchają pojazd do przodu. Trzecią zasadę dynamiki można sformułować w następujący sposób: każdemu działaniu towarzyszy przeciwdziałanie. Trzecia zasada dynamiki uwidacznia się np. w zjawisku odrzutu. OPORY RUCHU Między każdymi stykającymi się powierzchniami występują siły tarcia. Tarcie to siła działająca na powierzchni styku ciał, o zwrocie przeciwnym do zwrotu siły zmierzającej do przesunięcia tego ciała. Tarcie występuje zarówno podczas wprawiania ciała w ruch jak i w trakcie ruchu. Tarcie można zmniejszyć stosując smar. Tarcie toczne jest mniejsze od tarcia przesuwnego. Siłę tarcia obliczamy ze wzoru: F t = f F N gdzie: F t siła tarcia, f współczynnik tarcia, F N siła nacisku Współczynnik tarcia, charakteryzuje stykające się powierzchnie. Współczynniki tarcia dla różnych substancji są umieszczane w tabelach. Siłą tarcia jest wprost proporcjonalna do siły nacisku działającej na powierzchnię stykających się ciał. Im ciało bardziej naciska na podłoże tym tarcie jest większe. Wartość siły tarcia zależy od rodzaju stykających się powierzchni (im bardziej chropowate, tym większa siła tarcia) oraz od siły nacisku. Tarcie nie zależy od pola powierzchni styku.
5 Tarcie możemy podzielić na kilka rodzajów: statyczne, czyli pojawia się w momencie prób przemieszczania się ciał względem siebie kinetyczne (dynamiczne), występuje między powierzchniami ciał będącymi w ruchu Tarcie dynamiczne dzielimy na : tarcie przesuwne, kiedy ciała ślizgają się po sobie (np. ślizganie się sanek po śniegu) tarcie toczne, kiedy ciała lub elementy się toczą (np. toczenie się koła pojazdu po drodze). Na poruszające się ciała działają też siły oporu powietrza, które zależą od kształtu ciała, a także od jego prędkości. Wraz ze wzrostem prędkości rosną siły oporu.
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Bardziej szczegółowoZasady dynamiki przypomnienie wiadomości z klasy I
Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoOddziaływania te mogą być różne i dlatego można podzieli je np. na:
DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Bardziej szczegółowoZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Bardziej szczegółowoSIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
Bardziej szczegółowoZasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Bardziej szczegółowoElementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Bardziej szczegółowoWykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Bardziej szczegółowoSZCZEGÓŁOWE CELE EDUKACYJNE
Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoTarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Bardziej szczegółowoDYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Bardziej szczegółowoWymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017
Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, siły równoważące się. Dział V. Dynamika (10 godzin lekcyjnych)
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoPRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Bardziej szczegółowoZasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bardziej szczegółowoFizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:
Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje
Bardziej szczegółowoImię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź
Bardziej szczegółowoZasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Bardziej szczegółowoMiarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa).
Lekcja 4 Temat: Pomiar wartości siły ciężkości. 1) Dynamika dział fizyki zajmujący się opisem ruchu ciał z uwzględnieniem przyczyny tego ruchu. Przyczyną ruchu jest siła. dynamikos (gr.) = potężny, mający
Bardziej szczegółowoI ZASADA DYNAMIKI. m a
DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między
Bardziej szczegółowoSpotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
Bardziej szczegółowoKRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,
Bardziej szczegółowoWykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Bardziej szczegółowoSprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Bardziej szczegółowoDZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia
ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.
Bardziej szczegółowoTemat: OD CZEGO ZALEŻY SIŁA TARCIA?
Scenariusz lekcji fizyki I Gimnazjum Temat: OD CZEGO ZALEŻY SIŁA TARCIA? Cele kształcące, poznawcze: Uczeń podaje rodzaje siły tarcia; podaje przyczyny występowania siły tarcia, wymienia niektóre sposoby
Bardziej szczegółowoTreści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Bardziej szczegółowomgr Ewa Socha Gimnazjum Miejskie w Darłowie
mgr Ewa Socha Gimnazjum Miejskie w Darłowie LP. PLAN WYNIKOWY Z FIZYKI DLA II KL. GIMNAZJUM MA ROK SZKOLNY 2003/04 TEMATYKA LEKCJI LICZBA GODZIN 1. Lekcja organizacyjna. 1 2. Opis ruchów prostoliniowych.
Bardziej szczegółowoD Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:
D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: od odkryć Galileusza i Newtona w dynamice rozpoczęła się nowoczesna fizyka jest stosunkowo łatwy na poziomie liceum zawiera
Bardziej szczegółowoI zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
Bardziej szczegółowoFizyka 4. Janusz Andrzejewski
Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.
Bardziej szczegółowoPraca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Bardziej szczegółowomgr Anna Hulboj Treści nauczania
mgr Anna Hulboj Realizacja treści nauczania wraz z wymaganiami szczegółowymi podstawy programowej z fizyki dla klas 7 szkoły podstawowej do serii Spotkania z fizyką w roku szkolnym 2017/2018 (na podstawie
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoWYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla
Bardziej szczegółowoElementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia
Bardziej szczegółowoElementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Bardziej szczegółowoPrzykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Bardziej szczegółowoZestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Bardziej szczegółowoMechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Bardziej szczegółowoFIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Bardziej szczegółowoWymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa II Gimnazjum
Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa II Gimnazjum 5. Siły w przyrodzie Temat według 5.1. Rodzaje i skutki oddziaływań rozpoznaje na przykładach oddziaływania bezpośrednie
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowoPRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
Bardziej szczegółowoZakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Bardziej szczegółowoKLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)
KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoMechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:
III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Bardziej szczegółowoTest powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność
Bardziej szczegółowoWOJEWÓDZKI KONKURS FIZYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ SZKOLNY 12. 11. 2013 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania
Bardziej szczegółowoAnna Nagórna Wrocław, r. nauczycielka chemii i fizyki
Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM 2016/2017
WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM 2016/2017 ROK SZKOLNY: 2016/2017 Wymagania na ocenę dopuszczająca: wymienia przyrządy, za pomocą których mierzymy długość, temperaturę, czas,
Bardziej szczegółowoWYMAGANIA SZCZEGÓŁOWE Z FIZYKI KLAS 7. Cele operacyjne Uczeń: rozróżnia pojęcia: ciało fizyczne i substancja oraz podaje odpowiednie przykłady
Zagadnienie (tematy lekcji) Cele operacyjne Uczeń: Czym zajmuje się fizyka; Wielkości fizyczne, jednostki i pomiary; Jak przeprowadzać doświadczenia (3 godziny) określa, czym zajmuje się fizyka podaje
Bardziej szczegółowoTwórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
SCENARIUSZ LEKCJI PRZEDMIOT: FIZYKA TEMAT: Pierwsza zasada dynamiki Bezwładność ciała AUTOR SCENARIUSZA: mgr Krystyna Glanc OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Pierwsza zasada
Bardziej szczegółowoWYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI
WYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI KLASA VII II SEMESTR: 5. DYNAMIKA Na ocenę dopuszczającą: posługuje się symbolem siły; stosuje pojęcie siły jako działania skierowanego (wektor); wskazuje
Bardziej szczegółowoWYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA
WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował
Bardziej szczegółowoPodstawy fizyki sezon 1 II. DYNAMIKA
Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka
Bardziej szczegółowoZasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Bardziej szczegółowoWOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY. 24 listopada 2016 r. godz. 10:00
WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY 24 listopada 2016 r. godz. 10:00 Kod pracy ucznia Suma uzyskanych punktów Czas pracy: 60 minut Liczba punktów możliwych do uzyskania: 28 punktów
Bardziej szczegółowoFizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania
Bardziej szczegółowoPlan wynikowy fizyka kl. 7. Spotkania z fizyką kl. 7 nauczyciel: Iwona Prętki
1 ponad konieczne rozszerzające dopełniające Czym zajmuje się fizyka; Wielkości fizyczne, jednostki i pomiary; Jak przeprowadzać doświadczenia (3 godziny) I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny
Bardziej szczegółowoVI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)
1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowo2.3. Pierwsza zasada dynamiki Newtona
Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować
Bardziej szczegółowoI. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian)
1 Plan wynikowy ponad konieczne rozszerzające dopełniające I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian) Czym zajmuje się fizyka; Wielkości fizyczne, jednostki
Bardziej szczegółowoWYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI
WYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI KLASA VII II SEMESTR: 5. DYNAMIKA Na ocenę dopuszczającą: posługuje się symbolem siły; stosuje pojęcie siły jako działania skierowanego (wektor); wskazuje
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum
Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział
Bardziej szczegółowoWymagania Zagadnienie (tematy lekcji) I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian)
1 Plan wynikowy I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian) Czym zajmuje się fizyka; Wielkości określa, czym zajmuje się fizyka podaje przykłady powiązań fizyki
Bardziej szczegółowoI. PIERWSZE SPOTKANIE Z FIZYKĄ
NACOBEZU fizyka klasa 7 Temat lekcji Czym zajmuje się fizyka? fizyka jako nauka doświadczalna procesy fizyczne, zjawisko fizyczne ciało fizyczne a substancja pracownia fizyczna, przepisy BHP i regulamin
Bardziej szczegółowoWymagania edukacyjne z fizyki dla klasy 7
Wymagania edukacyjne z fizyki dla klasy 7 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, które mierzysz na co dzień wymienia przyrządy, za pomocą których mierzymy długość, temperaturę, czas, szybkość i
Bardziej szczegółowo7 Plan wynikowy (propozycja)
7 Plan wynikowy (propozycja) Pełna wersja planu wynikowego (propozycja), obejmująca treści nauczania zawarte w podręczniku Spotkania z fizyką dla klasy 7 (a także w programie nauczania), jest dostępna
Bardziej szczegółowoPrzedmiotowe ocenianie Ciekawa fizyka - Część 2/1 Tabela wymagań programowych na poszczególne oceny
Przedmiotowe ocenianie Ciekawa fizyka - Część 2/1 Tabela wymagań programowych na poszczególne oceny Rok szkolny 2015/2016 Temat lekcji w podręczniku Wymagania programowe P - podstawowe R - rozszerzające
Bardziej szczegółowoFizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Orzeczenie PPP
Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Orzeczenie PPP.2428.118.2014 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą których które
Bardziej szczegółowoDZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia
DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie drugiej. Zapoznanie z wymaganiami na poszczególne oceny. Czym zajmuje się fizyka? Wiem, czym zajmuje
Bardziej szczegółowo5 Plan wynikowy (propozycja)
5 Plan wynikowy (propozycja) Pełna wersja planu wynikowego (propozycja), obejmująca treści nauczania zawarte w podręczniku Spotkania z fizyką dla klasy 7 (a także w programie nauczania), jest dostępna
Bardziej szczegółowoPlan wynikowy fizyka rozszerzona klasa 2
Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy
Bardziej szczegółowoWYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Bardziej szczegółowoTest powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa B... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność
Bardziej szczegółowoFIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)
FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy
Bardziej szczegółowoSzczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w
Bardziej szczegółowoWektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Bardziej szczegółowoMechanika teoretyczna
Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem
Bardziej szczegółowo