Politechnika Poznańska 2006 Ćwiczenie nr2
|
|
- Laura Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak, aby pod działanie Ŝądanego obciąŝenia ponoŝonego przez współczynnik. powsałe w pręach napręŝenia spełniały warunek δ 00MPa.. Obliczyć przeieszczenia zaznaczone w ablicy Przyjąć E05GPa Przyczyna przeieszczenia ObciąŜenie zewnęrzne wpływ M N T Prze. pozioe Punku K Prze. pionowe Punku K Prze. Punku K wypadkowa Obró przekroju K ObciąŜenie zewnęrzne bez N i T Ziana eperaury Osiadanie podpór Wzajene przeieszczenie pk. R,S Obró cięciwy R,S Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej
2 Obliczenie reakcji i sił w pręach M 0 9 R ,5 R 40, 56kN A B B M 0 9 R 0 5,5 0 4 R 9, 44kN B A A L M 0 4 H 4R H 9, 44kN S A A A P M 0 4 H 5R 0 5,5 H 9, 45kN S B B B Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej
3 L Y 0 R sin 4 9,44 R 38, 94kN S S M 0 4H + 3R cos4 40 H 8, 33kN A S S S Wykresy sił wewnęrznych Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 3
4 Usala przekrój dla pręów: M MAX 58,35 00 knc W [ ] 7,4 c fd,5 kn c Przyjuję: dwueownik 40PE I3890c 4 A39,c E05GPa Usala przekrój dla pręów: NMAX 38,94 kn A [ ],8 c fd,5 kn c Przyjuję: x L 45x30x5 A x 3,5 70,4c Wyznacza przeieszczenie pionowe punku K przykładając w jego iejsce jednoskową wirualną siłę. WIRTUALNE REAKCJE OBLICZA SIĘ ANALOGICZNIE JAK ZWYKŁE Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 4
5 Wykresy wirualnych sił wewnęrznych Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 5
6 Wzór ogólny na przeieszczenia M M N N T T δ dx dx dx M dx N α dx 0 EI EA GI h Usuwa zbędne w ej części zadania eleeny: δ + + κ + α + + R M M EI dx + N N EA dx + T T κdx GI R R k l 5, 0 0,5 ( M ) [,08 0,5,505 0,8 +,505 0,5 0, 8 + EI ,35 0,5,505 ( 0,84 0,8) +,08 0,5.505 ( 0,8 0,84) ,5 +,505 (0,5 0,8 0,5 0,84) + 8,38 0,5 0,84 (3 + ) + 58,35 0, ,09 09,09kN ( M ) 0, 037 EI 6 kn κ ( T) [3,07 0,50,505 0,33,44 0,5,505 0,33 +,44 0,5,505 0, 65 + GA 35,95 0,5,505 0,65 + 8,37 0,84 + 9,45 3 0,8 + 9,45 3 0,8] κ 87,36, 87,36kN ( T) 0, GA 6 kn 4 88, , 0 ( N) [7, 0,5,505 0, +, 0,5,505 0, +, 0,5,505 0, 4 + EA + 7,0 0,5,505 0,4 + 9,44 3 0,8 + 40,46 3 0,7] 3,0 3,0kN ( N) 0, EA kn , 0 3 0,84] Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 6
7 ( N) [ ,,5 + 8,33 4 0,84] EA 46,09 46,09kN ( N) 0, 007 EA kn ,04 0 Wpływ N i T na przeieszczenie pionowe punku K wynosi: 7,47%(cały układ) i 5,07% (bez udziału pręów kraowych) , 06 Wyznacza pozioe przeieszczenie punku K. Przyczyną jes obciąŝenie zewnęrzne (bez N i T) oraz osiadanie podpór. Z uwagi na duŝy wpływ sił N w pręach nie oŝna ich poinąć. Posępuję analogicznie jak w poprzedni przykładzie, y raze przykładając w punkcie K jednoskowe wirualne obciąŝenie pozioe. Wyznacza reakcje i siły w pręach. (parz wyŝej) Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 7
8 Wykresy wirualnych sił wewnęrznych WZÓR: M M N N δ dx + dx R EI EA 0,5 V K [,08 0,5,505,7 +,505 0,5, ,5,505 (,7 +,83) + EI ,5 58,35 0,5,505 (,83 +,7) +,505 (0,5,7 + 0,5,83) + 8,38,7 (3 + ) ,35 3,83] + [8,33 4,7 + 38,94 4,,6] [ 0,00 0,39 0,004 0,39 + 0,005 0,39] 3 EA V 47,3 34,48 47,3kN 34,48kN + ( 0,0043) + + 0, EI EA kn kn 0043 K , V K 0, , ,0043 0, 08 Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 8
9 Wyznacza obró przekroju w punkcie K. Przyczyną jes obciąŝenie zewnęrzne (bez N i T). Z uwagi na duŝy wpływ sił N w pręach nie oŝna ich poinąć. Posępuję analogicznie jak w poprzednich przypadkach, y raze przykładając w punkcie K wirualny skupiony oen jednoskowy. Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 9
10 M M N N δ dx + dx EI EA M M N N dx dx [ 8,38 0,5 (3 + ) 58,35 0,5 3 + EI EA EI ,5 58,35 0,5,505 ( + ) +,08 0,5,505 ( + ) +,505 (0,5 + 0,5 ) ,5,08 0,5,505,505 0,5 ] + [8,33 4 ( 0,33) 38,94 4, 0,46] EA 59,33 97,99 59,33kN 97,99kN 0, , EI EA 6 kn kn ,04 0 0,008[ rad ] 0, 47 ϕ K ϕ K Wyznacza obró cięciwy R, S. Przyczyną jes ziana eperaury. W y przypadku przykłada w punkach R i S parę sił o warościach /x gdzie x długość cięciwy Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej 0
11 Wirualne wykresy ϕ M α dx + N α0dx h Dane: α, 0 5 -współczynnik rozszerzalności liniowej sali 0 ( 0) 30 C -róŝnica eperaur włókien dolnych i górnych przekroju d g h -wysokość przekroju 0 sr -eperaura onaŝu (przyjuję 0 ºC) -eperaura środka przekroju sr g + d sr ( ) 5 C 0 ( 5 C 0, 4 C a 0, 4 sr ( a) 0 ( ) C ( b) 0 C 0 (b) 0 C sr Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej
12 Tśr(a)-0,4 ºC Tśr(b)0 ºC ϕ M α dx + N α dx α [ 3 h h α 0 ( )[ 3 0,6 5,0 3] + 0(a)[0,4 4] 9 9 α 0 3 ϕ α ( 3,45) + α0() ( 0,806) + α0(a) (,86 ) h 5 30 C 5 ϕ, 0 ( 3,45 ) +, 0 ( 5 C) ( 0,806) +, 0 C 0,4 C ϕ 0,00504 [ rad ] 0, 8 5, ] + ( 0,4 C) (,86) C ZESTAWIENIE WYNIKÓW Przyczyna przeieszczenia Prze. pozioe Punku K Prze. pionowe Punku K Prze. Punku K wypadkowa Obró przekroju K ObciąŜenie zewnęrzne wpływ M N T 0,06 ObciąŜenie zewnęrzne bez N i T -0,06-0,47º Ziana eperaury Osiadanie podpór 0,0043 Wzajene przeieszczenie pk. R,S Obró cięciwy R,S -0,8º Uwaga!!!: W projekcie ogą wysąpić drobne błędy liczbowe z uwagi na zaokrąglenia Grzegorz Kayszek KBI - Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej
Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.
Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
A/B. Zadanie 1. Wyznaczenie linii wpływu Nα, Tα oraz Mα dla przedstawionej poniżej ramy. a) Grupa A. L wra =1- x 10
Poliechnika Poznańska Insyu Konsrukcji Budowlanych Zakład Mechaniki Budowli 4.2.25 rozwiązania zadań - kolokwium poprawkowe MB, III rok, s. dzienne mgr /B Zadanie. Wyznaczenie linii wpływu N, T oraz M
Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
Obliczanie układów statycznie niewyznaczalnych. metodą sił
Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Obliczanie układów statycznie niewyznaczalnych metodą sił.
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury)
Poliechnika Poznańska Wydział Achiekuy Budownicwa i Inżynieii Śodowiska ĆWICZENIE NR 4 OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ empeauy) Sieocki Damian ok sudiów: III semes: VI g. 8 Poznań METODA PRZEMIESZCZEŃ
Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.
ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym
MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl
MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY
zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY
1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.
Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik
Ogólne zasady konstrukcji
Ogólne zasady konstrukcji 1. Konstrukcja powinna spełniać wszystkie podstawowe warunki wynikające ze szczegółowych zasad w stopniu równy lub wyŝszy od załoŝonego. 2. Konstrukcja powinna być optyalna (polioptyalna)
MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl
MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,
Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił.
Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła. Zadanie rozwiąż metodą sił. P= 2kN P= 2kN Stopień statycznej niewyznaczalności: n s l r l pr 2 w 6
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Rys.59. Przekrój poziomy ściany
Obliczenia dla ściany wewnętrznej z uwzględnieniem cięŝaru podciągu Obliczenia ściany wewnętrznej wykonano dla ściany, na której oparte są belki stropowe o największej rozpiętości. Zebranie obciąŝeń jednostkowych-
Obliczenie kratownicy przy pomocy programu ROBOT
Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1
ZADANIA - POWTÓRKA
Część 5. ZADANIA - POWTÓRKA 5. 5. ZADANIA - POWTÓRKA Zadanie W ramie przedstawionej na rys 5. obliczyć kąt obrotu przekroju w punkcie K oraz obrót cięciwy RS. W obliczeniach można pominąć wpływ sił normalnych
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:
KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii
Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił
Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności
= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.
Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI
POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;
Załącznik nr 3. Obliczenia konstrukcyjne
32 Załącznik nr 3 Obliczenia konstrukcyjne Poz. 1. Strop istniejący nad parterem (sprawdzenie nośności) Istniejący strop typu Kleina z płytą cięŝką. Wartość charakterystyczna obciąŝenia uŝytkowego w projektowanym
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Połączenia. Przykład 1. Połączenie na wrąb czołowy pojedynczy z płaszczyzną docisku po dwusiecznej kąta. Dane: drewno klasy -
Dane: drewno klasy - h = b = Połączenia C30 16 cm 8 cm obciąŝenie o maksymalnej wartości w kombinacji obciąŝeń stałe klasa uŝytkowania konstrukcji - 1 F = 50 kn α = 30 0 Przykład 1 Połączenie na wrąb czołowy
Analiza fundamentu na mikropalach
Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH
Politechnika Poznańska Wyział Buownictwa i InŜynierii Śroowiska Instytut onstrukcji Buowlanych Zakła echaniki Buowli Stuia Stacjonarne II Stopnia I rok Semestr II / OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOACH
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram
ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie
wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu
Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy
Skręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
Projekt nr 4. Dynamika ujęcie klasyczne
Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
MECHANIKA OGÓLNA wykład 4
MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe
PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk
PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2
Projekt: Wzmocnienie skarpy w Steklnie_09_08_2006_g Strona 1 Geometria Ściana oporowa posadowienie w glinie piaszczystej z domieszką Ŝwiru Wysokość ściany H [m] 3.07 Szerokość ściany B [m] 2.00 Długość
OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ
WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów
BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.
Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie:
OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE
OLICZENI STTYCZNO - WYTRZYMŁOŚCIOWE 1. ZESTWIENIE OCIĄśEŃ N IEG SCHODOWY Zestawienie obciąŝeń [kn/m 2 ] Opis obciąŝenia Obc.char. γ f k d Obc.obl. ObciąŜenie zmienne (wszelkiego rodzaju budynki mieszkalne,
KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych
KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie
NIP ANALIZA STATYCZNA KŁADKI STALOWEJ O KONSTRYKCJI KRATOWEJ NAD RZEKĄ KWISĄ, ŁĄCZĄCĄ AL. WOJSKA POLSKIEGO Z UL.
BIURO PROJEKTÓW I EKSPERTYZ BUDOWNICTWA KOMUNIKACYJNEGO Z. KOKOSZKA 66-004 Zatonie, Zatonie 3E k /Zielonej Góry tel./fax 068/ 452 41 44, kom. 0601/ 78-98-66 NIP 973-003 - 52 92 ANALIZA STATYCZNA KŁADKI
OBLICZENIA WYMIAROWE KOJARZONEJ PARY OTWÓR-WAŁEK
OBLICZENIA WYMIAROWE KOJARZONEJ PARY OTWÓR-WAŁEK Zadanie przykładowe 1 Dla pasowania 2008/8 obliczyć wymiary graniczne, tolerancje pasowania i wartości wskaźników pasowania. Wykonane obliczenia przedstawić
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
PROJEKTOWANIE I BUDOWA
ObciąŜenia usterzenia PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObciąŜenia usterzenia W. BłaŜewicz Budowa samolotów, obciąŝenia St. Danilecki Konstruowanie samolotów, wyznaczanie ociąŝeń R. Cymerkiewicz
Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..
rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie
Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM
Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Ć w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Projekt ciężkiego muru oporowego
Projekt ciężkiego muru oporowego Nazwa wydziału: Górnictwa i Geoinżynierii Nazwa katedry: Geomechaniki, Budownictwa i Geotechniki Zaprojektować ciężki pionowy mur oporowy oraz sprawdzić jego stateczność
ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś
Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć