PODATNOŚĆ DYNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA
|
|
- Weronika Tomaszewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻNIERSKIE ISSN X 38, s. 3-38, Gliwice 9 PODATNOŚĆ DNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji Procesów Technologicznych i Zintegrowanych Systemów Wytwarzania, Politechnika Śląska slawomir.zolkiewski@polsl.pl Streszczenie. Podatność dynamiczna jest jedną z szeroko stosowanych metod analizy dynamicznej [-3, 6-7], dzięki której możliwe staje się określenie wzajemnych relacji pomiędzy amplitudą drgań a częstotliwością wymuszenia. W pracy zamodelowano układ obustronnie podpartej belki, znajdującej się na obrotowym stole, wraz z uwzględnieniem w modelu sił tłumiących amplitudy przemieszczenia. Belka znajduje się na obrotowym stole obracającym się ze stałą prędkością kątową. Rozważany ruch ograniczono do ruchu płaskiego, natomiast belkę do belki o przekroju symetrycznym, stałym na jej całej długości.. WSTĘP Praca dotyczy problemu tłumionych drgań giętnych obustronnie podpartej belki w ruchu unoszenia. W modelu matematycznym uwzględniono elementy będące wynikiem wykonywania przez układ ruchu obrotowego, w tym w szczególności sił Coriolisa i sił odśrodkowych, a także elementy związane z występowaniem sił tłumiących. Elementy te rozważano nie tylko w powiązaniu z ruchem głównym, ale przede wszystkim z ruchem lokalnym, w znacznym stopniu modyfikując postać podatności dynamicznej. W artykule przedstawiono formułę matematyczną podatności dynamicznej oraz wykresy podatności dynamicznej w zależności od częstotliwości jednostkowej siły wymuszającej. W pracy podatność dynamiczną rozumie się jako amplitudę uogólnionego przemieszczenia poprzecznego wywołanego przez siłę poprzeczną o jednostkowej amplitudzie.. MODELOWANE BELKI.. Model belki obustronnie podpartej na obrotowym stole Założono, że w środku belki, przedstawionej na rys., działa harmoniczna siła poprzeczna F o jednostkowej amplitudzie, jednostkowa w związku z definicją podatności dynamicznej. Siła tłumiąca F b jest opisana jako funkcja pochodnej drgań przemieszczenie ośrodka w czasie oraz rozważana jako siła obracająca się razem z układem. Obydwu końcom belki przypisano zerowe przemieszczenie oraz zerową siłę poprzeczną, ponieważ belka jest belką obustronnie podpartą. Ruch belki opisano za pomocą równań ruchu (5-6) przedstawionych w rozdziale 3
2 3 S. ŻÓŁKIEWSKI niniejszej pracy. Układ równań opisujących warunki brzegowe do równań (3, 5-6) zapisano w następującej postaci: E I E I w każdej chwili t>. Z Z 3 (, t) w l x (, t) w l x 3, E I (, t), w (, t ), x w l, Z w l/ (, t) F δ ( x l / ) e jωt dx e jωt. () F Rys.. Model rozważanej obustronnie podpartej belki z tłumieniem (F b ).. Zagadnienie własne Poszukuje się rozwiązania w postaci iloczynu funkcji własnych zmiennej przemieszczenia oraz funkcji własnych zmiennej czasu jako: ( ) ( ) ( ) w xt, V x W t, () gdzie: V x - funkcja własna przemieszczenia, ( ) W( t ) - funkcja własna czasu. Uwzględniając harmoniczny przebieg funkcji własnej zmiennej czasu, przyjęto co następuje: j t w xt, V x e Ω, (3) ( ) ( ) gdzie:
3 PODATNOŚĆ DNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM 33 Ω - częstość siły poprzecznej, j - jednostka urojona. Zagadnienie brzegowe przedstawiono w następującej postaci: IV ( ) ( ) ( ) V ( ) () () V x kv x, V,, V l, V l. () Po rozwiązaniu układu równań ze stałymi całkowania z ogólnego rozwiązania układu: C C C C + C sin + C ( kl) + C cos( kl) + C3 sinh( kl) + C cosh( kl), ( kl) C cos( kl) + C sinh( kl) + C cosh( kl), sin,, 3 (5) otrzymano wartości własne poprzez przyrównanie wyznacznika charakterystycznego układu (5) do zera: sin kl sinh kl (6) ( ) ( ) Rys.. Rozwiązania graficzne równania charakterystycznego układu (6) w przypadku ogólnym I, II, III i IV postaci drgań Kolejne cztery wartości własne z równania (6) oraz z rozwiązania graficznego (rys. ) wynoszą: kl π, kl π, kl 3 π, kl π. (7) 3 Ciąg wartości własnych belki obustronnie podpartej rozwiązanych również graficznie na rys., można zatem zapisać następującym wyrażeniem: k nπ. (8) Funkcja własna przemieszczenia belki obustronnie podpartej jest równa: ( kl) ( kl) sin V( x) Csin( kx) sinh( kx) sinh (9)
4 3 S. ŻÓŁKIEWSKI Amplituda s@%d Rys. 3. Trzy kolejne postacie drgań belki obustronnie podpartej Na rys. 3 przedstawiono kolejne trzy postacie drgań belki obustronnie podpartej. Zakłada się tożsamość funkcji własnych zmiennej przemieszczenia belki stacjonarnej z funkcjami własnymi zmiennej przemieszczenia belki w ruchu unoszenia, a różnice wynikające z obracania się belki uwzględniono dalej w modelu matematycznym układu. 3. RÓWNANIA RUCHU BELKI W rozdziale zawarto wyprowadzenie równań ruchu belek obustronnie podpartych na obrotowym dysku. W modelu matematycznym uwzględniono wpływ sił tłumienia. Równania ruchu wyprowadzono za pomocą metod klasycznych, zakładając współrzędne uogólnione jako poszczególne współrzędne opisujące położenie i orientację analizowanego przekroju oraz prędkości uogólnione jako odpowiednie pochodne względem czasu z tych współrzędnych: dq q r q& r& v dt dq q r q& r& v dt X, X X,,. () Siły uogólnione zapisano w zależności od elementów macierzy rotacji, której użyto do transformacji poszczególnych wartości z lokalnego układu współrzędnych do globalnego układu współrzędnych, uwzględniając zaczepienie siły w połowie długości belki względem osi X siła ma postać: F X Fg Ql. () x Siły uogólnione względem osi globalnego układu współrzędnych są następujące: FgQl F. () x
5 PODATNOŚĆ DNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM 35 Po przyjęciu, że oś belki pokrywa się z osią x lokalnego układu współrzędnych, założono, że wszystkie siły poprzeczne, które zwrócone są przeciwnie do zwrotu osi y lokalnego układu współrzędnych wywołują momenty ujemne, natomiast siły zwrócone zgodne ze zwrotami osi y lokalnego układu współrzędnych, wywołują dodatnie momenty Otrzymano równania ruchu w postaci macierzowej: cosϕ sinϕ cos sin ϕ ϕ ω s w ω w + t cosϕ sinϕ wω cosϕ sinϕ b b s ω sinϕ cosϕ w + M + M + t w ω cosϕ sinϕ t cosϕ sinϕ ω& w ω s + & cosϕ sinϕ EIz w sinϕ cosϕ ρa x (3) gdzie: E moduł ounga, I Z moment bezwładności przekroju poprzecznego belki, w b współczynnik tłumienia siły tłumiącej Fb b. t Dalej przyjęto następujące oznaczenia: π w cos ϕ X w wsinϕ, π w sin ϕ w wcosϕ, () Ostatecznie uwzględniając zależności (3-), otrzymano równania ruchu belki drgającej giętnie z uwzględnieniem tłumienia w ruchu unoszenia zrzutowane na osie X i globalnego układu współrzędnych: Rzutując względem osi X globalnego układu odniesienia: wx EIz wx b wx w ω ( ssinϕ w) ω ω ( scos ϕ wx ). t ρa x M t t (5)
6 36 S. ŻÓŁKIEWSKI Po zrzutowaniu na oś : w EIz w b w X + + ω ( scosϕ wx ) ω ( ssinϕ w) ω w. t ρa x M t t (6). PODATNOŚĆ DNAMICZNA ANALIZOWANEGO UKŁADU Podatność dynamiczną wyznaczono po ortogonalizacji równań ruchu i poszukiwaniu rozwiązania w postaci sumy iloczynów funkcji własnych zmiennej przemieszczenia oraz funkcji własnych zmiennej czasu. Po kilku przekształceniach uzyskano postać podatności dynamicznej w następującej postaci: ( ) () V xv l ( ) ( ) ( ) Sqrt ρaγn + (7) gdzie: ( a k ω Ω ) ( bω/ M) + ( bω/ M) Ω b b ( ak ω Ω ) Ω+ ω Ω ω (8) M 3 a k ω Ω 5 6 b Ω M b ω M ω Ω M (9) () () () (3) Rys.. Podatność dynamiczna belki drgającej giętnie w ruchu unoszenia bez tłumienia (linia gruba) oraz belki stacjonarnej (linia cienka)
7 PODATNOŚĆ DNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM 37 Na rys. przedstawiono przykładowy wykres podatności dynamicznej (7) belki obracającej się z prędkością kątową rad/s drgającej giętnie bez tłumienia. Rys. 5. Wykres podatność dynamicznej tłumionej belki w ruchu unoszenia Na rysunku 5 przedstawiono przykładowy wykres podatności dynamicznej belki obracającej się przy znacznym tłumieniu drgań. 5. PODSUMOWANIE Problem tłumionych drgań giętnych belek w ruchu unoszenia ma wiele zastosowań technicznych [-7]. W niniejszej pracy przeanalizowano układ belki obustronnie podpartej z rozważaniem w modelu matematycznym rotacyjnych sił tłumienia. Rozważany model można bezpośrednio przełożyć na aplikację w postaci turbiny pompy łopatkowej, gdzie poszczególne łopatki są zamocowane na obracającej się tarczy [3, 5]. Model ten powinien dodatkowo uwzględniać nieliniowości związane z geometrycznym kształtem łopatek oraz nieliniowości fizykalne wynikające z zastosowanych tworzyw. Siły tłumienia w przedstawionym modelu mają za zadanie dyssypację energii z jednej strony oraz transfer energii z ruchu głównego w pracy traktowanego jako ruch unoszenia do lokalnych drgań układu. Wyprowadzona w pracy podatność dynamiczna belki podpartej obustronnie wyraża z jednej strony wpływ prędkości unoszenia na charakterystyki dynamiczne (wyraźne przesunięcia zer charakterystyki podatności dynamicznej oraz podwojenie biegunów podatności dynamicznej w miejscu zer charakterystyki układu stacjonarnego) oraz z drugiej strony zawiera elementy związane z występowanie w układzie sił tłumienia. W pracy wyniki przedstawiono w postaci formuły matematycznej podatności dynamicznej oraz charakterystyk dynamicznych podatności w postaci wykresów wygenerowanych za pomocą autorskiego oprogramowania Modyfit [7]. Praca wykonana w ramach grantu N N5 35 finansowanego przez Ministerstwo Nauki i Informatyzacji w latach 8-. This work has been conducted as a part of research project N N5 35 supported by the Ministry of Science and Higher Education in 8-.
8 38 S. ŻÓŁKIEWSKI LITERATURA. Buchacz A., Żółkiewski S.: Transverse vibrations of the elastic multielement manipulator in terms of plane motion and taking into consideration the transportation effect. In: 8 th Conference on Dynamical Systems Theory and Applications. Łódź 5, Proceedings vol., p Buchacz A., Żółkiewski S.: Dynamic analysis of the mechanical systems vibrating transversally in transportation. Journal of Achievements in Materials and Manufacturing Engineering 7, Vol., issues -, p Genta G.: Dynamics of rotating systems. New ork : Springer, 5.. Szefer G.: Dynamics of elastic bodies in terms of plane frictional motion. Journal of Theoretical and Applied Mechanics,, Vance J. M.: Rotordynamics of turbomachinery. Wiley, Żółkiewski S.: Model matematyczny obracających się tłumionych belek podatnych. Modelowanie Inżynierskie 8, nr 36, t. 5, s Żółkiewski S.: Analysis and modelling of rotational systems with the Modyfit application. Journal of Achievements in Materials and Manufacturing Engineering 8, Vol. 3, issue, p DNAMICAL FLEXIBILIT OF THE TWO-SIDED SUPPORTED DAMPED BEAM IN TRANSPORTATION Summary. One of the most widely used method of dynamical analysis is the dynamical flexibility method [-3, 6-7], thanks to this method we can determine mutual relations between an amplitude of vibrations and a frequency of load. In this thesis there was modeled the two-sided supported beam being on the rotational table. In this model there were took into consideration the damping forces. The beam is on the rotational table that rotates with constant angular velocity. Considered motion is limited to plane motion and the beam has a symmetrical cross-section constant on its whole length.
DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Projekt nr 4. Dynamika ujęcie klasyczne
Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek
WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 39, s. 41-48, Gliwice 2010 WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH ANDRZEJ BUCHACZ, MAREK
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
AKTYWNA REDUKCJA DRGAŃ WIRUJĄCEJ ŁOPATY ZA POMOCĄ ELEMENTÓW PIEZOELEKTRYCZNYCH
Piotr PRZYBYŁOWICZ 1 Wojciech FUDAŁA 2 drgania wirników, tłumienie drgań, elementy piezoelektryczne AKTYWNA REDUKCJA DRGAŃ WIRUJĄCEJ ŁOPATY ZA POMOCĄ ELEMENTÓW PIEZOELEKTRYCZNYCH W pracy tej została przeanalizowana
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
MODELOWANIE DYSKRETNYCH UKŁADÓW MECHATRONICZNYCH ZE WZGLĘDU NA FUNKCJĘ TŁUMIENIA
MODELOWANIE INŻYNIERSKIE nr 47, ISSN 1896-771X MODELOWANIE DYSKRETNYCH UKŁADÓW ZE WZGLĘDU NA FUNKCJĘ TŁUMIENIA Katarzyna Białas 1a, Andrzej Buchacz 1b, Damian Gałęziowski 1c 1 Instytut Automatyzacji Procesów
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
MODELOWANIE WPŁYWU TŁUMIENIA WEWNĘTRZNEGO NA CHARAKTERYSTYKI DYNAMICZNE CERAMICZNYCH PRZETWORNIKÓW PZT
MODELOWANIE INŻYNIERSKIE nr 46, ISSN 896-77X MODELOWANIE WPŁYWU TŁUMIENIA WEWNĘTRZNEGO NA CHARAKTERYSTYKI DYNAMICZNE CERAMICZNYCH PRZETWORNIKÓW PZT Instytut Automatyzacji Procesów Technologicznych i Zintegrowanych
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
DRGANIA ELEMENTÓW KONSTRUKCJI
DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
RUCH DRGAJĄCY RZESZOTA PRZESIEWACZA DWUCZĘSTOŚCIOWEGO**
Górnictwo i Geoinżynieria Rok 34 Zeszyt 4/1 2010 Remigiusz Modrzewski*, Piotr Wodziński* RUCH DRGAJĄCY RZESZOTA PRZESIEWACZA DWUCZĘSTOŚCIOWEGO** 1. Wstęp Przesiewacz dwuczęstościowy zbudowany jest z dwóch
Etap 1. Rysunek: Układy odniesienia
Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
2. MODELOWNY UKŁAD MECHATRONICZNY ORAZ PRZYJĘTE ZAŁOśENIA
MODELOWANIEINśYNIERSKIE ISSN 1896-771X 37, s. 35-0, Gliwice 009 IĄG DYSKRETNO IĄGŁYH MODELI MATEMATYZNYH UKŁADU MEHATRONIZNEGO ANDRZEJ BUHAZ, MAREK PŁAZEK Instytut Automatyzacji Procesów Technologicznych
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Modelowanie Fizyczne w Animacji Komputerowej
Modelowanie Fizyczne w Animacji Komputerowej Wykład 2 Dynamika Bryły Sztywnej Animacja w Blenderze Maciej Matyka http://panoramix.ift.uni.wroc.pl/~maq/ Rigid Body Dynamics https://youtu.be/_e70usvrjra
w ustalonych stopniach swobody konstrukcji. 2. Określenie częstości kołowych ω k
Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Bogumił Wrana*, Bartłomiej Czado* IDENTYFIKACJA TŁUMIENIA W GRUNCIE 1. Wstęp Najczęściej w modelowaniu tłumienia konstrukcji stosowany jest model tłumienia wiskotycznego
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
3 Budowa i testy stanowiska wykorzystaniem
3 Budowa i testy stanowiska wykorzystaniem 3 procesu produkcyjnego. P e- natomiast umieszczony jest e- n- temat wielu prac badawczych prowadzonych w ostatnich latach [1] [6].W badaniach tych umieszczony
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
DOŚWIADCZALNE I SYMULACYJNE ANALIZY WPŁYWU DRGAŃ STYCZNYCH POPRZECZNYCH NA SIŁĘ TARCIA W RUCHU ŚLIZGOWYM
MODELOWANIE INŻYNIERSKIE nr 47, ISSN 896-77X DOŚWIADCZALNE I SYMULACYJNE ANALIZY WPŁYWU DRGAŃ STYCZNYCH POPRZECZNYCH NA SIŁĘ TARCIA W RUCHU ŚLIZGOWYM Mariusz Leus a, Paweł Gutowski b Katedra Mechaniki
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
DYNAMIKA KONSTRUKCJI BUDOWLANYCH
DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)
Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz
Symulacja pracy silnika prądu stałego
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016
Podstawy robotyki wykład VI. Dynamika manipulatora
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci
Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2
Dynaika Drgania wyuszone nietłuione - Raa /9 Dynaika Drgania wyuszone nietłuione Raa Wyznaczyć siły kinetyczne działające na raę jak na rysunku, obciążoną zienna haronicznie siłą P o. Przyjąć następujące
BADANIA GRUNTU W APARACIE RC/TS.
Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy
MODEL DYNAMICZNY STRUKTURY ŚMIGŁOWCA Z UWZGLĘDNIENIEM WARUNKÓW KONTAKTOWYCH PODWOZIE - PODŁOŻE
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 44, s. 91-100, Gliwice 2012 MODEL DYNAMICZNY STRUKTURY ŚMIGŁOWCA Z UWZGLĘDNIENIEM WARUNKÓW KONTAKTOWYCH PODWOZIE - PODŁOŻE TOMASZ GORECKI Instytut Lotnictwa, e-mail:
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-
WSPOmAgANiE PROCESU PROjEkTOWANiA ORAz badań STRUkTURY NOWOPROjEkTOWANEj konstrukcji śmigłowca NA POdSTAWiE LEkkiEgO śmigłowca bezpilotowego
PRACE instytutu LOTNiCTWA ISSN 0509-6669 232, s. 50 62, Warszawa 2013 WSPOmAgANiE PROCESU PROjEkTOWANiA ORAz badań STRUkTURY NOWOPROjEkTOWANEj konstrukcji śmigłowca NA POdSTAWiE LEkkiEgO śmigłowca bezpilotowego
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
WPŁYW TŁUMIENIA KONSTRUKCYJNEGO MOCOWAŃ NA DRGANIA UKŁADU ZMIANY WYSIĘGU ŻURAWIA
WPŁYW TŁUMIENIA KONSTRUKCYJNEGO MOCOWAŃ NA DRGANIA UKŁADU ZMIANY WYSIĘGU ŻURAWIA Wojciech Sochacki 1a, Marta Bold 1b 1 Instytut Mechaniki i Podstaw Konstrukcji Maszyn, Politechnika Częstochowska a sochacki@imipkm.pcz.pl,
Manipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ
53/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ J. STRZAŁKO
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
INSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach