Podstawowe człony dynamiczne
|
|
- Fabian Michałowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty () = + 6. Człon dwu-inercyjny -inercyjny drugiego rzędu aperiodyczny () = Człon inercyjny drugiego rzędu, człon oscylacyjny = = + 2 +
2 Człon proporcjonalny = L = = Wymuszenie skokowe Wymuszenie liniowe = = = = = L = = L = AK a) Im{s} AtiK b) A Re{s} t ti t Charakterystyki czasowe odpowiedzi członu proporcjonalnego przy K > poddanego wymuszeniu: a) skokowemu, b) liniowo narastającemu. 2
3 Człon całkujący = L = = Wymuszenie skokowe = = = L = Wymuszenie liniowe = = = L = 2 a) Im{s} b) 2 A Re{s} ti t ti t Charakterystyki czasowe odpowiedzi członu proporcjonalnego z całkowaniem przy K > poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. 3
4 Człon inercyjny + () = L = = + Wymuszenie skokowe = + = Wymuszenie liniowe = + = a) Im{s} b) ( ) 0,63 A Re{s} T t Charakterystyki czasowe odpowiedzi członu proporcjonalnego z inercją o stałej czasowej T przy K > poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. T ti t 4
5 Człon całkujący z inercją + = L = = + Wymuszenie skokowe Wymuszenie liniowe = ( + ) = + =. = 2 ( ) Im{s} ( ) Re{s} T t T t Charakterystyki czasowe obiektu złożonego z członów: proporcjonalnego o wzmocnieniu K >, całkującego i inercyjnego o stałej czasowej T, poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. 5
6 Człon różniczkujący rzeczywisty + () = L = = + = Wymuszenie skokowe () = + =. + = + = = Wymuszenie liniowe + Im{s} Re{s} = a) T t b) T t Charakterystyki obiektu złożonego z członów: proporcjonalnego o wzmocnieniu K >, różniczkującego z inercyjną o stałej czasowej T poddanego wymuszeniom skokowym: a) stałowartościowemu, b) prędkościowemu (liniowo narastającemu) 6
7 Człon inercyjny drugiego rzędu = Wymuszenie skokowe + + () = + () = + + = Wymuszenie liniowe + + () = + = ln Im{s} Re{s} = punkt przegięcia a) ti t Charakterystyki obiektu inercyjnego drugiego rzędu o stałych czasowych inercji T i T2 (T2 > T) i wzmocnieniu K >, poddanego wymuszeniom skokowym: a) stałowartościowemu, b) prędkościowemu (liniowo narastającemu) b) T+T2 t 7
8 Człon inercyjny drugiego rzędu =, Transformatę operatorową odpowiedzi obiektu na wymuszenie = opisuje zależność Wprowadzając podstawienia typu: () = = pulsacja drgań nietłumionych, = = bezwględny współczynnik tłumienia, przy czym jest wyględnym współcz. tłumienia, = = pulsacja drgan własnych tłumionych. Transformata odpowiedzi przyjmuje postać () = Transformata ma trzy pierwiastki z czego jeden ma wartość = 0, a pozostałe dwa pierwiastki, będące biegunami transmitancji, mogą być różnego typu w zależności od wartości współczynnika tłumienia ζ. Mogą tu wystąpić trzy przypadki, które zostaną niżej pokazane. 8
9 . Dla współczynnika o wartościach z przedziału 0 < pozostałe dwa pierwiastki (bieguny transmitancji członu) są parą liczb zespolonych sprzężonych, = ± = ± Odpowiedź na wymuszenie skokowe o amplitudzie A = sin +, gdzie = arctg = 2, = Im{s} + Re{s} tn + t Charakterystyka skokowa obiektu drugiego rzędu oscylacyjnego o wzmocnieniu K > i współczynniku tłumienia 0 < ζ <. 9
10 2 Dla współczynnika o wartości = transformata odpowiedzi przyjmuje postać () = +. Transmitancja operatorowa członu ma w tym przypadku dwukrotny pierwiastek o wartości, =. Oryginał odpowiedzi obiektu zapisać jako = + 3 Dla współczynnika o wartości > dwa pierwiastki transmitancji będą pojedyncze Transformata odpowiedzi przyjmuje postać () = Oryginał odpowiedzi obiektu zapisać, = ± =
11 ζ < 0,7 Im{s} ζ < 0,7 = 0,7 = = 0,7 Re{s} > > = Charakterystyki skokowe członu drugiego rzędu o wzmocnieniu K > i różnych wartościach współczynnika tłumienia ζ > 0. t Miejsca położeń biegunów członu oscylacyjnego przy wartościach współczynnika tłumienia > 0
12 CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie transmitancji operatorowej, stosując podstawienie u(t) () () = sin () = sin + Rys.. Przebieg odpowiedzi układu na wymuszenie harmoniczne w stanie ustalonym ϕ = () Transmitancja widmowa ma następującą interpretację fizyczną. Jeżeli na wejście liniowego członu lub układu o transmitancji operatorowej () będzie wprowadzony sygnał sinusoidalny = sin (rys. ), to po zakończeniu procesu przejściowego na wyjściu ustali się sinusoidalny sygnał = sin + o tej samej częstotliwości kątowej (pulsacji) jaką ma sygnał wejściowy, lecz zwykle o innej amplitudzie i fazie, które są zależne od bieżącej wartości tej częstotliwości. Warto tutaj odnotować fakt, że przesunięcie fazowe sygnału wyjściowego względem wejściowego o kąt odpowiada przesunięciu tych sygnałów o = jednostek czasu. 2
13 Z twierdzenia o przesunięciu w dziedzinie zmiennej rzeczywistej wynika, że a stąd transmitancję operatorową zapisać można w postaci Lsin + = Lsin, (2) = = = L sin + L sin () Lsin Lsin = () (3) Zgodnie z () = () = () (4) Transmitancja widmowa ma sens wzmocnienia zespolonego, przebiegu harmonicznego o pulsacji 3
14 Moduł transmitancji widmowej () = = () = (5) określa wzmocnienie - stosunek amplitud sygnałów harmonicznych wyjściowego () i wejściowego (), a argument (kąt fazowy) = = (6) transmitancji widmowej przesunięcie fazy sygnału () względem (). Na podstawie twierdzenia Eulera dla liczb zespolonych można transmitancję widmową zapisać w postaci gdzie: = = cos + sin = + (7) = Re() = cos = Im() = sin Zależność określającą kąt fazowy można zapisać jako moduł zaś w postaci = arg = = arctg, (8) = = +. (9) 4
15 Miejsce geometryczne punktów, jakie zakreśla koniec wektora na płaszczyźnie zmiennej zespolonej, przy zmianie pulsacji 0 < < sygnału wejściowego, nazywa się charakterystyką amplitudowo-fazową lub wykresem Nyquista. Charakterystyka ta określa zatem zachowanie się elementu lub układu w zadanym zakresie zmian wartości częstotliwości sygnału wejściowego (). Oprócz wykresów Nyquista bardzo powszechnie stosuje się charakterystyki częstotliwościowe logarytmiczne, tzw. wykresy Bodego. Osie i () skaluje się logarytmicznie, wprowadzając tzw. moduł logarytmiczny () = 20 log (0) którego jednostką jest decybel (db); wzmocnieniu 0-krotnemu odpowiada 20 db, -krotnemu 0 db. Dla charakterystyki fazowej oś skaluje się logarytmicznie, a pozostawia się w mierze liniowej. 5
16 . Charakterystyki amplitudowo-fazowe - wykres Nyquista Transmitancję widmową można zapisać w postaci funkcji wymiernej gdzie () i ( ) są wielomianami zmiennej zespolonej. Oba wielomiany można zapisać w nieco rozwiniętej postaci =, () Jeśli uwzględnić (2) w () = + = + (2) = + + = + + (3) składowe, rzeczywista i urojona, transmitancji widmowej ( ) (7) przyjmą postać = + + = + + (4) 6
17 Powyższe zależności umożliwiają wyznaczenie współrzędnych położenia końca wektora ( ) na płaszczyźnie Nyquista dla różnych wartości częstotliwości kątowej. Z punktu widzenia analizy i syntezy układów regulacji istotnymi punktami są te, które określają wartości współrzędnych dla pulsacji granicznych = 0 i = oraz wartości tych pulsacji, dla których trajektoria zmian położeń wektora () przecina: oś rzeczywistą, tzn. gdy Q = 0, oraz oś urojoną, tzn. gdy = 0. () ( ) ( ) = ( ) ( ) ( ( ) ) ( ) = ( ) M(0) wzrost ω () Rys.2. Charakterystyka amplitudowo-fazowa i jej parametry - wykres Nyquista 7
18 Zadanie Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = (a) Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = = = Współrzędne rzeczywiste wykresu Nyquista obiektu określają części: rzeczywista i urojona transmitancji widmowej 5 = = = Im = (b) (c) (d) 8
19 () ω=0 ω=6 ω= -0.2 ω= () ω=0,5 ω=3, ω=2 ω=, Rys.3. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu inercyjnego drugiego rzędu Wartości tych współrzędnych dla wybranych, nieujemnych wartości pulsacji ( 0) przedstawiono w tablicy. ω[rad/s] 0 0,5, 2 3, P(ω),00 0,95 0,77 0,44 0,00-0,2-0,09 0 Q(ω) 0,00-0,26-0,49-0,64-0,48-0,26-0,09 0 Wartość pulsacji, przy której ma miejsce przecięcie osi, wyznaczamy rozwiązując równanie = 0, skąd = 5 = 3,87 9
20 Zadanie 2 Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = + + (a) gdzie: =, = 0,4 s, = 2,5 s Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = + + (b) Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe, sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = (c) 20
21 Na podstawie (c) widać, że składowe rzeczywiste i urojone transmitancji widmowej określone są zależnościami = + + +, (d) = + +. (e) Uwzględniając zadane wartości stałych czasowych i wzmocnienia obiektu, wartości powyższych składowych dla wybranych, nieujemnych wartości pulsacji ( 0) ω[rad/s] 0 0,06 0, 0,5 0,3 0,5 P(ω) -2,90-2,83-2,78-2,53 -,83 -,09-0,345 0 Q(ω) -6,2-9,34-5,74 -,93-0, Pulsacja, przy której występuje przecięcie osi przez charakterystykę amplitudowo-fazową wyznaczona, została z przyrównania składowej do zera, a więc skąd = 0 = = 2
22 Na rys.4.a) można spostrzec, że dla zerowych wartości stałych czasowych członów inercyjnych ( + = 0) otrzymujemy wykres charakterystyki Nyquista dla idealnego członu całkującego. Charakterystyka będzie wówczas przebiegała wzdłuż asymptoty 0 leżącej na ujemnej części osi składowej. 0 = + () () ω=0,5 ω= ω=0,3 ω= () ω= ω= 0 () -0.2 ω=0,5 ω=0, ω=0, ω=0, ω=0,06 a) -6 b) Rys.4. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu trzeciego rzędudwuinercyjnego z członem całkującym a), fragment wykresu powiększony w pobliżu punktu przecięcia osi składowej b) 22
23 2. Charakterystyki logarytmiczne modułu i fazy Charakterystyki częstotliwościowe Bodego składają się z dwóch wykresów. Jeden dotyczy logarytmu z modułu (amplitudy), czyli () = 20 log drugi - kąta fazowego = arg = = arctg, naniesione jako funkcje częstotliwości w skali logarytmicznej. Wykreślanie ( ), jak również ( ), można znacznie uprościć, wykorzystując do tego asymptoty prostoliniowe, tzw. charakterystyki asymptotyczne amplitudy i fazy. Większość transmitancji ma postać iloczynową typu = , (5) gdzie = ±, ( 0). Stąd zarówno logarytm modułu jak i kąt fazowy na wykresach Bodego wyrażają się przez sumowanie 20log = 20 log + 20 log log (5.a) 20 log + 20 log
24 arg = arg + arg + + arg (5.b) arg + arg Wykresy Bodego dla wyrażenia (5) sprowadzają się do superpozycji graficznej krzywych poszczególnych członów. Transmitancja składa się z kombinacji członów typu: a), b) + ±, (6) c) ± i co za tym idzie, charakterystyki asymptotyczne amplitudy i fazy wyrażenia (5) będą superpozycją asymptot prostoliniowych tych członów elementarnych (6). Człony z wykładnikiem potęgowym: dodatnim mają cechy członu różniczkującego - przyspieszającego, ujemnym - mają cechy członu całkowego - opóźniającego. 24
25 Charakterystyki asymptotyczne członu typu ( 6.a) () = 20 log = 20 log + 20 log, = arg = 90 Człon ten wprowadza stałe przesunięcie fazowe, a wykres logarytmu modułu jest linią prostą o nachyleniu 20 db/dek. (dekadę) przy czym = ± = 0,, 2. Dla wykładnika 0 linia ta przecina oś odciętych przy częstotliwości =. Dla wartości wykładnika = 0 wykresy modułu są liniami prostymi równoległymi do osi odciętych - pulsacji. Przesunięcie fazowe ma wartość zerową. (7) [db] 20 N=0, K> [ ] N=2 N=-2 N= dekada log() N=- N=0, K< N=2 N= N=0 N=- N=-2 dekada log() -20 Rys.5. Charakterystyki amplitudowe i fazowe członów: różniczkowych N>0, całkowych N<0, proporcjonalnego N=0 25
26 Charakterystyki asymptotyczne członu typu ( 6.b) () = 20 log + ± = ±20 log +, = arg + ± = ± arctg Gdy częstotliwość jest dostatecznie mała, tzn., to składnik jest pomijalnie mały w stosunku do, tzn. i logarytm modułu ma wartość 20 log = 0. Zatem dla małych częstotliwości asymptota jest linią prostą leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu (0dB). Dla dużych zaś częstotliwości, tj. gdy, logarytm modułu członu można być aproksymowany asymptotą ±20 log. Dla tego zakresu częstotliwości ta część charakterystyki ma cechy członu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Jest to bowiem linia prosta o nachyleniu ±20 db/dek, przecinająca oś odciętych przy częstotliwości granicznej =, gdzie = jest tzw. częstotliwością sprzęgającą półproste obu asymptot. Dla tej częstotliwości kątowej logarytm modułu rzeczywistej charakterystyki częstotliwościowej członu wynosi ±20 log + = 3 db. Wartość ta stanowi maksymalny błąd aproksymacji logarytmicznej charakterystyki amplitudowej asymptotami prostoliniowymi. Jedna z metod wykreślania asymptotycznej charakterystyki fazowej polega na zastąpieniu krzywej odcinkiem siecznej, przecinającej asymptoty w punktach odpowiadających częstotliwościom = 0, i = 0. Dla częstotliwości < 0, fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 0, przesunięcie fazowe jest bliskie ±90. ( 8) 26
27 [db] [db] dekada 20 0 log() 0 log() [ ] arctg -40 [ ] arctg , 0 log() arctg Rys.6. Charakterystyki amplitudowe a) i fazowe b) członu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego , 0 log( ) arctg 2 Rys.7. Charakterystyki amplitudowe i fazowe członu drugiego rzędu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego 27
28 Charakterystyki asymptotyczne członu typu ( 6 c)) = 20 log ± = ±20 log + 2 = arg ± = ± arctg 2 Dla małych częstotliwości logarytm modułu może być aproksymowany asymptotą 20 log = 0. Tak jak poprzednio, dla małych częstotliwości asymptota jest linią prostą, leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu (0dB). Dla dużych częstotliwości logarytm modułu może być aproksymowany asymptotą ±20 log = ±40 log. Jest to linia prosta o nachyleniu ±40 db/dek, przecinająca oś odciętych przy częstotliwości sprzęgającej =. Dla tego zakresu częstotliwości ta część charakterystyk ma cechy członów drugiego rzędu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Dokładność aproksymacji asymptotami prostoliniowymi zależy od współczynnika tłumienia. Im mniejszą wartość ma ten współczynnik <, tym większa jest różnica pomiędzy wartością charakterystyki amplitudowej rzeczywistej a jej aproksymacji prostoliniowej, co szczególnie uwidacznia się dla częstotliwości bliskich wartości częstotliwości sprzęgającej =. Dla częstotliwości < 0, przesunięcie fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 0, wtedy przesunięcie fazowe jest bliskie ±80. Dokładność aproksymacji pomiędzy tymi wartościami kątowymi zależy od współczynnika tłumienia. (Rys. 7). (9) 28
29 Zadanie 3 Wyznaczyć rzeczywiste i asymptotyczne przebiegi logarytmicznych charakterystyk amplitudowej i fazowej obiektu dwuinercyjnego o transmitancji =,8 + 0,3 + 6 (a) Rozwiązanie Z postaci transmitancji wynika, że częstotliwość sprzęgająca członów inercyjnych wynosi odpowiednio Wzmocnienie obiektu ma wartość = 0,3 rad s, = 6 rad s. =,8 0,3 6 = Transmitancję widmową obiektu możemy zapisać w postaci iloczynu transmitancji członów elementarnych typu 6.b) = + + (b) 29
30 Jeśli oznaczyć = +, = + (c) moduł transmitancji będzie iloczynem modułów członów elementarnych =, przy czym = = + = 0,3 +, (d) = = + =
31 Wprowadzając oznaczenia modułów logarytmicznych członów elementarnych = 20 log, = 20 log równanie logarytmicznej charakterystyki amplitudowej możemy zapisać w postaci () = + Poszczególne człony wniosą przesunięcia fazowe (e) (f) = arctg, = arctg (g) Stąd charakterystykę fazową obiektu określa równanie = + = arctg 0,3 arctg (h) 5 Sumowanie charakterystyk, zgodnie z równaniami (f) i (h), pokazuje rysunek 8. 3
32 [db] log ω [ ] 0 0, 0. 0, log ω Rys.8. Charakterystyki amplitudowe i fazowe obiektu składającego się z dwóch członów inercyjnych (całkowo proporcjonalnych) 32
33 Zadanie 2.4 Wyznaczyć charakterystyki logarytmiczne układu o transmitancji = ( + ) + + (a) dla = 00 /s, = 5 s, = 0,5 s, = 0,02 s. Rozwiązanie Po wprowadzeniu oznaczeń częstotliwości sprzęgających = = 0,2 rad s, = = 2 rad s, = = 50 rad s transmitancję a) przekształcamy do postaci widmowej iloczynu członów elementarnych = ( + ) + + (b) 33
34 Sumowanie logarytmicznych charakterystyk amplitudowych i fazowych pokazano na rys. 9, stosując oznaczenia = 20 log = 20 log 20 log = 20 log log, = 20 log +, = 20 log +, = 2 20 log +, = arg = 90, = arg + = arctg, = arg + = arctg, = arg + = 2 arctg. 34
35 [db] log 20 log ω log ω [ ] 90 Rys. 9. Charakterystyki amplitudowe i fazowe , 0, , 0 0 log ω
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Korekcja układów regulacji
Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:
PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Sterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH
4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4.1. PODSTAWOWE ELEMENTY LINIOWE 4.1.1. Uwagi ogólne Układ dynamiczny daje się zwykle podzielić na elementy, z których każdy można rozpatrywać niezależnie
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
Laboratorium Podstaw Metrologii BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jest: przybliżenie zagadnień dotyczących pomiarów wielkości zmiennych w czasie,
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne
LINIOWE UKŁADY DYSKRETNE
LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec