3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)
|
|
- Justyna Brzozowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz z warunkami brzegowymi i warunkami początkowymi 1 u c t u = f(x, t) da x [; ], >, t > (3.1) u (, t) = α (t), u (, t) = β (t) da t > (3.) u (x, ) = ϕ (x), u t (x, ) = ψ (x) da x [; ]. (3.3) Zakładamy, że ϕ jest kasy C, ψ, α, β są kasy C 1. Zakładamy ponadto, że spełnione są tzw. warunki zgodności, tzn. ϕ () = α (), ϕ () = β (), ψ () = α (), ψ () = β (). Zagadnienie (3.1)-(3.3) rozwiążemy w kiku etapach, stosując tzw. metodę Fouriera zwaną także metodą separacji zmiennych Drgania swobodne struny zamocowanej Załóżmy, że struna jest zamocowana w punktach końcowych, tzn. spełnione są jednorodne warunki brzegowe postaci u(, t) = u(, t) = da t >, tzn. α i β (3.4) oraz f (brak siły zewnętrznej wymuszającej ruch). Najpierw rozwiążemy pewne zagadnienie pomocnicze. Znaeźć rozwiązanie równania (3.1) nie równe tożsamościowo zeru, spełniające warunki brzegowe (3.4) i przedstawiane w postaci u (x, t) = X (x) T (t), gdzie funkcje X i T zaeżą tyko od jednej zmiennej. 19
2 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH Podstawiając u (x, t) = X (x) T (t) do równania (3.1), gdzie f, otrzymujemy X (x) X (x) = 1 c T (t) T (t). (3.5) Ponieważ równość (3.5) zachodzić musi da wszystkich x i t z rozważanego zakresu, więc obie strony tej równości muszą być stałe. Oznaczając tę stałą przez λ dostajemy równość która prowadzi do układu równań X (x) X (x) = 1 c T (t) T (t) = λ, X (x) + λx (x) = (3.6) T (t) + c λt (t) = (3.7) Z warunków brzegowych (3.4) wynika, że X () = X () = (w przeciwnym razie T (t) i u ). Da funkcji X (x) otrzymaiśmy tzw. zagadnienie Sturma-Liouvie a poegające na wyznaczeniu takich wartości λ, zwanych wartościami własnymi, przy których istnieją niezerowe rozwiązania równania (3.6), zwane funkcjami własnymi, spełniające warunki X () = X () =. W ceu wyznaczenia wartości własnych zagadnienia naeży rozważyć trzy następujące przypadki. 1 λ <. Wówczas rozwiązaniem równania (3.6) jest funkcja postaci X (x) = C 1 e x λ + C e x λ. Z warunków X () = X () = wynika, że C 1 = C =, zatem X (x) i u. λ =. Wówczas X (x) = ax + b i warunki X () = X () = znów impikują, że a = b =, zatem X (x) i u. 3 λ >. Teraz X (x) = C 1 cos x λ + C sin x λ i da istnieją niezerowe funkcje λ n = ( πn ) da n = 1,, 3,... (3.8) X n (x) = sin πn x (3.9) będące rozwiązaniami równania (3.6) z warunkami X () = X () =. Liczby λ n są wartościami własnymi rozważanego zagadnienia. Z równania (3.7) da λ = λ n otrzymujemy, że T n = A n cos πnc t + B n sin πnc t. (3.1) W takim razie rozwiązaniem zagadnienia pomocniczego (3.1), (3.4) są funkcje ( u n (x, t) = A n cos πnc t + B n sin πnc ) t sin πn x. (3.11)
3 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 1 Aby skonstruować rozwiązanie spełniające także zadane warunki początkowe (3.3) tworzymy szereg u(x, t) = u n (x, t) = ( A n cos πnc t + B n sin πnc ) t którego współczynniki, zgodnie z teorią szeregów Fouriera, okreśone są wzorami sin πn x, (3.1) A n = ϕ(s) sin πns ds, B n = nπc ψ(s) sin πns ds. (3.13) T w i e r d z e n i e Jeżei ϕ jest kasy C, ϕ () = ϕ () =, ψ jest kasy C 1, ψ () = ψ () =, to szereg (3.1) ze współczynnikami okreśonymi wzorami (3.13) jest rozwiązaniem zagadnienia (3.1) da f, z warunkami (3.3)-(3.4). P r z y k ł a d 1 Rozwiązać omówione powyżej zagadnienie da =, c = 1, ϕ(x) = x( x), ψ(x) =. Ze wzorów (3.13) wynika, że tak więc rozwiązanie okreśone jest wzorem A n = 16 n 3 π 3 [1 ( 1)n ], B n =, u(x, t) = 16 π 3 [1 ( 1) n ] n 3 sin π nx cos π nt. Funkcja u(x, t) jest funkcją okresową w czasie, o okresie 4. Poniższy rysunek przedstawia kształt początkowy struny. Struna wyprostowuje się w chwiach t = 1, 3, 5,... P r z y k ł a d Rozwiązać omówione powyżej zagadnienie da =, c = 1, ϕ(x) = x ( x), ψ(x) =.
4 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH Z podanych wzorów wynika, że tak więc rozwiązanie okreśone jest wzorem A n = 3 n 3 π 3 [ ( 1) n+1 1 ], B n = u(x, t) = 3 π 3 [( 1) n+1 1] n 3 sin π nx cos π nt. Funkcja u(x, t) jest funkcją okresową w czasie, o okresie 4. Poniższy rysunek przedstawia kształt początkowy struny Drgania wymuszone struny zamocowanej Rozważmy teraz zagadnienie (3.1), (3.3), (3.4) poegające na wyznaczeniu funkcji u (x, t) spełniającej równanie (3.1), z dowonymi warunkami początkowymi i jednorodnymi warunkami brzegowymi. Rozwiązanie tego zagadnienia może być zapisane w postaci sumy dwóch funkcji, z których jedna jest rozwiązaniem równania jednorodnego (f ) z dowonymi warunkami początkowymi (zagadnienie to zostało omówione w poprzednim punkcie), zaś druga funkcja jest rozwiązaniem równania niejednorodnego (f ), ae z jednorodnymi warunkami początkowymi (ϕ, ψ ) i jednorodnymi warunkami brzegowymi. Wystarczy zatem wyznaczyć funkcję u spełniającą równanie z warunkami 1 u c t u = f(x, t) da x [; ], >, t > (3.14) u (x, ) =, u t (x, ) = da x [; ], (3.15) u(, t) = u(, t) = da t >. (3.16) W tym ceu załóżmy, że funkcja dana f (x, t) da x [; ] może być zapisana w postaci sinusowego szeregu Fouriera wzgędem zmiennej x f (x, t) = f n (t) sin πn x, (3.17)
5 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 3 gdzie f n (t) = f (s, t) sin πn sds da n = 1,,.... Rozwiązania zagadnienia (3.14)-(3.16) poszukujemy w postaci u (x, t) = T n (t) sin πn x, (3.18) gdzie T n (t) są niewiadomymi funkcjami. Zakładając, że dozwoone jest różniczkowanie szeregu (3.18) wyraz po wyrazie, z równania (3.14) i przedstawienia (3.17) otrzymujemy a zatem ( T n (t) + ωnt n (t) ) sin πn + x = c f n (t) sin πn x, T Z warunków (3.15) wynika ponadto, że n (t) + ωnt n (t) = c f n (t), gdzie ω n = πnc. (3.19) T n () = T n () = da n = 1,,.... (3.) Rozwiązanie zagadnienia (3.19)-(3.) można przedstawić w postaci T n (t) = c πn t f (s, r) sin πn sds sin ω n (t r) dr da n = 1,,.... (3.1) T w i e r d z e n i e Jeżei funkcja f jest kasy C oraz f (, t) = f (, t) = da każdego t, to szereg (3.18) ze współczynnikami okreśonymi wzorami (3.1) jest rozwiązaniem zagadnienia (3.14)-(3.16) Przypadek ogóny Rozważmy teraz ogóne zagadnienie (3.1)-(3.3). W ceu rozwiązania tego zagadnienia wprowadzamy funkcję pomocniczą w (x, t) = α (t) + [β (t) α (t)] x (3.) i poszukujemy rozwiązania zagadnienia w postaci u (x, t) = w (x, t) + v (x, t). Ponieważ ze wzoru (3.) wynika, że w (, t) = α (t) i w (, t) = β (t), więc v (, t) = v (, t) =, tzn. funkcja v (x, t) jest rozwiązaniem pewnego zagadnienia postaci (3.1), (3.3), (3.4) z jednorodnymi warunkami brzegowymi. Zagadnienie wyznaczenia takiej funkcji v (x, t) zostało omówione w poprzednim punkcie.
6 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 4 3. Równanie drgań membrany swobodnej Rozważmy jednorodne równanie drgań płaskiej membrany 1 c u t u =, gdzie u = u + u y (3.3) rozważane da (x, y) D R, t >. Załóżmy, że spełnione są warunki początkowe u (x, y, ) = ϕ (x, y), u t (x, y, ) = ψ (x, y) da (x, y) D (3.4) oraz, że ϕ jest kasy C, ψ jest kasy C Membrana prostokątna Załóżmy teraz, że D jest prostokątem, D = (; A) (; B) oraz, że membrana jest zamocowana na brzegu, tzn. u (, y, t) = u (A, y, t) = u (x,, t) = u (x, B, t) = da t. (3.5) W ceu rozwiązania tego zagadnienia postępujemy anaogicznie jak w przypadku drgań swobodnych struny zamocowanej. Stosując metodę separacji zmiennych w postaci u (x, y, t) = X (x) Y (y) T (t), otrzymujemy ostatecznie rozwiązanie zagadnienia (3.3)-(3.5) w postaci sumy szeregu podwójnego u (x, y, t) = k, sin πk πn x sin A B y (a k,n cos ω k,n t + b k,n sin ω k,n t), (3.6) gdzie k ω k,n = π A + n da k, n = 1,,..., B o współczynnikach a k,n i b k,n okreśonych wzorami a k,n = 4 AB b k,n = A dx 4 ABω k,n c B A ϕ (x, y) sin πk A dx B ψ (x, y) sin πk A πn x sin ydy, (3.7) B πn x sin ydy. (3.8) B P r z y k ł a d Rozwiązać zagadnienie drgań membrany prostokątnej da A = B = 1, c = 1, ϕ(x, y) = (x x )(y y ), ψ(x, y) =. Zgodnie ze wzorami (3.7), (3.8), całkując przez części wyznaczamy współczynniki a k,n i b k,n ( ) 1 + ( 1) k+1 (1 + ( 1) n+1 ) a k,n = 16, b k 3 n 3 π 6 k,n =, a zatem rozwiązanie zagadnienia jest postaci u(x, y, t) = 16 π 6 k, 1 + ( 1) k ( 1) n+1 sin kπx sin nπy cos (tπ ) k k 3 n + n. 3
7 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 5 Poniższy rysunek przedstawia wygąd membrany i kształt jej przekroju wzdłuż przekątnej kwadratu D w chwii t =. Koejny rysunek przedstawia drgania punktu środkowego (x = y =, 5) membrany jako funkcję zmiennej t. 3.. Membrana kołowa Załóżmy teraz, że D jest kołem, D = {(x, y) : x + y < a } oraz, że membrana jest zamocowana na brzegu, tzn. u(x, y, t) = da x + y = a, da t. (3.9) Załóżmy, że funkcje ϕ i ψ opisujące warunki początkowe (3.4) spełniają zaeżność ϕ(x, y) = ϕ(r), ψ(x, y) = ψ(r), gdzie r = x + y, (3.3) tzn. warunki te są kołowo symetryczne. O funkcjach danych załóżmy, że ϕ jest kasy C, pochodna ϕ istnieje i jest przedziałami ciągła, ϕ(a) =, ψ jest kasy C 1, pochodna ψ istnieje i jest przedziałami ciągła, ψ(a) =. Z symetrii równania i warunków wynika, że rozwiązanie u może być poszukiwane w postaci u = u(r, t). Przechodząc do współrzędnych biegunowych (r, θ), przekształcamy wyjściowe równanie do postaci (przyjmujemy, że u nie zaeży od θ) u r + 1 r r 1 u =. (3.31) c t
8 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 6 Stosując metodę Fouriera (separacji zmiennych) da u(r, t) = R(r)T (t) otrzymujemy dwa równania R (r) + 1 r R (r) R(r) = T (t) c T (t) = λ = const. Z warunków brzegowych wynika, że stały parametr może przyjmować wartości λ = λ n = x n, da n = 1,,... a gdzie (x n ) jest ciągiem dodatnich zer funkcji Bessea J. Funkcje Bessea J k okreśone są wzorem J k (z) = n= ( 1) n ( z ) n+k, n! (n + k)! a ich zera (x n ) są stabearyzowane. Poniższy rysunek przedstawia wykres funkcji J. W takim razie funkcja ( r ) [ ( ) ( )] ct ct u n (x, t) = J x n A n cos x n + B n sin x n a a a da n = 1,,... (3.3) i dowonych stałych A n, B n jest rozwiązaniem rozważanego równania (3.31) spełniającym jednocześnie warunek brzegowy (3.9). Pełnym rozwiązaniem zagadnienia, spełniającym także warunki początkowe (3.3), jest funkcja u(r, t) okreśona jako suma szeregu u(r, t) = gdzie stałe A n i B n wyznaczone są za pomocą wzorów A n = a ( rϕ(r)j a J1 (x n ) ( r ) [ ( ) ( )] ct ct J x n A n cos x n + B n sin x n a a a r x n a ) dr, B n = a ( rψ(r)j ax n cj1 (x n ) r x n a (3.33) ) dr (3.34)
9 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 7 da n = 1,,..., J 1 (x) = J (x). P r z y k ł a d Rozwiązać zagadnienie drgań membrany kołowej da a = 1, ϕ(r) = 1 r, ψ(r) =. Z danych zadania wynika, że B n =, A n = Korzystając z własności funkcji Bessea 1 r(1 r )J J1 (x n r)dr da n = 1,,... (x n ) i wzoru rekurencyjnego d dx [xn J n (x)] = x n J n 1 (x) J k 1 (x) + J k+1 (x) = k x J k (x) oraz stosując wzór na całkowanie przez części otrzymujemy ostatecznie A n = 4J (x n ) x nj 1 (x n ) = 8 x 3 nj 1 (x n ), a zatem rozwiązanie zagadnienia wyraża się wzorem u(r, t) = 8 1 x 3 nj 1 (x n ) J (x n r) cos(x n ct). Poniższy rysunek przedstawia wygąd memebrany i kształt jej przekroju osiowego w chwii t =.
10 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 8 Koejny rysunek przedstawia drgania punktu położonego na osi symetrii membrany jako funkcję zmiennej t Membrana nieograniczona Załóżmy teraz, że rozważamy równanie drgań membrany (3.3) da (x, y) R. Oznacza to, że dane są tyko warunki początkowe opisujące początkowy kształt membrany i prędkość początkową drgań (3.4), nie ma zaś warunków brzegowych. Następujące twierdzenie okreśa warunki dostateczne da istnienia rozwiązania i podaje jego postać (tzw. wzór Poissona). T w i e r d z e n i e Jeżei funkcje ϕ i ψ są odpowiednio kasy C 3 i C, to funkcja u postaci u(x, y, t) = 1 ψ(p, q)dpdq πc c t (p x) (q y) + 1 ϕ(p, q)dpdq t πc c t (p x) (q y) K ct K ct gdzie K ct jest kołem o środku w punkcie (x, y) i promieniu ct, zagadnienia. jest rozwiązaniem rozważanego P r z y k ł a d Rozwiązać zagadnienie drgań membrany nieograniczonej da danych: c = 1, ϕ(x, y) = 1, ψ(x, y) =. 1 + x + y Stosując we wzorze Poissona zamianę zmiennych w całce podwójnej p = x + r cos α, q = y + r sin α otrzymujemy wzór na funkcję u w postaci u(x, y, t) = 1 π t r ϕ(x + r cos α, y + r sin α) t π t r drdα = = 1 π t 1 r t π 1 + x + y + r + xr cos α + yr sin α t r drdα
11 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 9 Poniższy rysunek przedstawia wygąd membrany w chwii t =. Na następnym rysunku widoczne są kształty przekrojów osiowych membrany da t =, t =, 5, t =, 6, t = 1, t = 3, t = 6.
12 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 3 Koejny rysunek przedstawia drgania punktu położonego na osi symetrii membrany jako funkcję zmiennej t. 3.3 Drgania poprzeczne beki Metoda separacji zmiennych może być stosowana do rozwiązywania zagadnień granicznych da równań różniczkowych cząstkowych rzędu wyższego niż drugi. Przykładem takiego zagadnienia jest zagadnienie drgającej beki opisane równaniem rzędu czwartego z warunkami początkowymi u tt + c u xxxx =, da x (; ), t > (3.35) u (x, ) = ϕ (x), u t (x, ) = ψ (x) (3.36) opisującymi kształt początkowy beki i początkową prędkość drgań oraz warunkami brzegowymi postaci u (, t) = u (, t) = u xx (, t) = u xx (, t) =. (3.37) Podobnie jak w przypadku struny, poszukujemy niezerowych rozwiązań równania (3.35) spełniających jednocześnie warunki brzegowe (3.37), w postaci u (x, t) = X (x) T (t). Prowadzi to do probemu wyznaczenia wartości własnych λ, da których istnieją niezerowe funkcje X (x) spełniające równanie z warunkami X (4) (x) X (x) = T (t) c T (t) = λ R (3.38) X () = X () = X () = X () =. (3.39) Z rozważań anaogicznych do przypadku omówionego da struny jednowymiarowej wynika, że jedynymi iczbami λ o tej własności są iczby ( πn ) 4 λ n = da n = 1,,..., którym odpowiadają funkcje X n (x) = sin πn x, T n (t) = A n sin [ c ( πn ) ] [ t + B n cos c ( πn ) ] t.
13 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 31 Rozwiązanie zagadnienia (3.35)-(3.37) możemy zatem zapisać w postaci u (x, t) = X n (x) T n (t) = { [ A n sin c ( πn ) ] [ t + B n cos c ( πn ) ]} t gdzie współczynniki A n i B n szeregu (3.4) wyznaczamy z warunków początkowych ϕ (x) = skąd wynika ostatecznie, że A n = cn π 3.4 Zadania 1. Rozwiązać równanie B n sin πn + x, ψ (x) = ( πn ) πn A n c sin x, ψ (x) sin πn xdx, B n = u t u a = b sinh x przy jednorodnych warunkach początkowych i brzegowych. Rozwiązać równanie u (, t) =, u (, t) =. u t u = bx (x ) przy jednorodnych warunkach początkowych i brzegowych 3. Rozwiązać równanie u (, t) =, u (, t) =. u t u = t x (x ) przy jednorodnych warunkach początkowych i brzegowych 4. Rozwiązać równanie u (, t) =, u (, t) =. u t u a h t b u = ϕ (x) sin πn xdx, da n = 1,,.... przy jednorodnych warunkach początkowych oraz u (, t) = A, u (, t) =. sin πn x, (3.4)
14 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH 3 5. Rozwiązać równanie przy jednorodnych warunkach brzegowych i warunkach początkowych u t u a = u (, t) =, u (, t) = u (x, ) =, t (x, ) = sin π x. 6. Rozwiązać równanie i warunkach początkowych 7. Rozwiązać równanie i warunkach początkowych 8. Rozwiązać równanie u t u a = u (, t) =, u (x, ) = sin 5π x, u (x, ) = x, (, t) = u t u a = u (, t) =, t (x, ) = cos π x. (, t) = t (x, ) = sin π 3π x + sin x. i warunkach początkowych u t u a = (, t) =, u (x, ) = x, (, t) = (x, ) = 1. t
15 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH Rozwiązać równanie przy jednorodnych warunkach brzegowych i jednorodnych warunkach początkowych u t u a = A exp ( t) sin π x u (, t) =, u (, t) = u (x, ) =, (x, ) =. t 1. Rozwiązać równanie u t u a = Ax exp ( t) przy jednorodnych warunkach brzegowych u (, t) =, u (, t) = i jednorodnych warunkach początkowych u (x, ) =, (x, ) =. t 11. Rozwiązać równanie u t u a = A sin t u (, t) =, i jednorodnych warunkach początkowych u (x, ) =, (, t) = (x, ) =. t 1. Rozwiązać równanie u t u =, < x < π, t > u (, t) = t, u (π, t) = t 3 i warunkach początkowych u (x, ) = sin x, (x, ) =. t
16 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH Rozwiązać równanie u t u =, < x < π, t > u (, t) = exp ( t), u (π, t) = t i warunkach początkowych u (x, ) = sin x cos x, (x, ) = 1. t 14. Rozwiązać równanie i warunkach początkowych 15. Rozwiązać równanie i warunkach początkowych 16. Rozwiązać równanie u t u =, < x < π, t > u (, t) = t, u (x, ) = sin 1 x, (π, t) = 1 (x, ) = 1. t u t u a = sin t, < x <, t > (, t) =, u (x, ) =, (, t) = sin sin t a a t (x, ) = cos x a. t u a =, < x <, t > u (, t) =, u (, t) = i warunku początkowym { u (x, ) = x da < x 1 x da 1 < x <.
17 TEMAT 3. METODA FOURIERA DLA RÓWNAŃ HIPERBOLICZNYCH Rozwiązać równanie t u a =, < x <, t > i warunku początkowym 18. Rozwiązać równanie u (, t) =, u (, t) = u (x, ) = cx ( x). t u a =, < x <, t > i warunku początkowym 19. Rozwiązać równanie u (, t) =, u (, t) = u (x, ) = Ax. t u a =, < x <, t > i warunku początkowym. Rozwiązać równanie (, t) =, u (, t) = u (x, ) = A ( x). t u a =, < x <, t > i warunku początkowym 1. Rozwiązać równanie (, t) =, (, t) = u (x, ) = U = Const. t u a =, < x <, t > i warunku początkowym u (, t) = T, u (x, ) =. u (, t) = U
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Spis treści Wstęp Pojęcia podstawowe Struna nieograniczona Metoda Fouriera dla równań hiperbolicznych Równanie przewodnictwa cieplnego (I)
Spis treści Wstęp ii 1 Pojęcia podstawowe 1 1.1 Przegląd wybranych równań i modeli fizycznych................... 1 1.1.1 Równania opisujące ruch falowy........................ 1 1.1.2 Równania przewodnictwa
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Metoda rozdzielania zmiennych
Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
5. Równania różniczkowe zwyczajne pierwszego rzędu
5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:
Układy funkcji ortogonanych Ioczyn skaarny w przestrzeniach funkcji ciągłych W przestrzeni iniowej funkcji ciągłych na przedziae [a, b] można okreśić ioczyn skaarny jako następującą całkę: f, g = b a f(x)g(x)w(x)
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
1 Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Równania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
1 Równania różniczkowe drugiego rzędu
Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez
x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać
3.. Zaeżność od kąta θ Aby rozwiązać równanie 3.9) da dowonego ν m, rozważymy przypadek z m 0, a potem pokażemy jak z tego rozwiązania przez wieokrotne różniczkowanie wygenerować rozwiązanie da dowonego
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.
Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu
Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Zaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Analiza Matematyczna część 5
[wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU
6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk
Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera
Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.
1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
Wykład z równań różnicowych
Wykład z równań różnicowych Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1. Operatorem
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.
Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie