Przestrzenie wektorowe
|
|
- Weronika Wierzbicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania: dodawanie (x 1, y 1, z 1 ) + (x 2, y 2, z 2 ) := (x 1 + x 2, y 1 + y 2, z 1 + z 2 ) oraz mnożenie przez liczbę rzeczywistą: α (x 1, y 1, z 1 ) := (αx 1, αy 1, αz 1 ). Łatwo sprawdzić, że struktura algebraiczna (R 3, +) jest grupą abelową, a działania + oraz spełniają następujące warunki: a) dla α, β R oraz (x, y, z) R 3 : (α + β) (x, y, z) = α (x, y, z) + β (x, y, z) ; b) dla α R oraz (x 1, y 1, z 1 ), (x 2, y 2, z 2 ) R 3 : α [(x 1, y 1, z 1 ) + (x 2, y 2, z 2 )] = α (x 1, y 1, z 1 ) + α (x 2, y 2, z 2 ) ; c) dla α, β R oraz (x, y, z) R 3 : α [β (x, y, z)] = (αβ) (x, y, z) ; d) dla (x, y, z) R 3 : 1 (x, y, z) = (x, y, z). 21
2 4.1. Przestrzeń wektorowa Przykład 4.2. W przestrzeni ciągów liczbowych C 0 = wprowadzamy dwa działania: dodawanie { } {a n } n=1 : lim a n = 0 n oraz mnożenia przez liczbę rzeczywistą {a n } n=1 + {b n} n=1 := {a n + b n } n=1 α {a n } n=1 := {αa n} n=1. Podobnie jak w poprzednim przykładzie, struktura algebraiczna (C 0, +) jest grupą abelową, a działania spełniają poniższe warunki: a) dla α, β R oraz {a n } n=1 C 0 : (α + β) {a n } n=1 = α {a n} n=1 + β {a n} n=1 ; b) dla α R oraz {a n } n=1, {b n} n=1 C 0 : α ({a n } n=1 + {b n} n=1 ) = α {a n} n=1 + α {b n} n=1 ; c) dla α, β R oraz {a n } n=1 C 0 : α (β {a n } n=1 ) = (αβ) {a n} n=1 ; d) dla {a n } n=1 C 0 : 1 {a n } n=1 = {a n} n=1. Zbiór z działaniami + i spełniającymi warunki a) d) z powyższych przykładów nazywać będziemy przestrzenią wektorową (liniową) Przestrzeń wektorowa Niech X będzie dowolnym zbiorem. Definicja 4.1. Trójkę (X, +, ) nazywamy rzeczywistą przestrzenią wektorową, jeżeli struktura (X, +) jest grupą abelową, a działania + i spełniają następujące warunki: a) α (x + y) = (α x) + (α y) ; b) (α + β) x = (α x) + (β x) ; c) α (β x) = (αβ) x; d) 1 x = x, dla dowolnych x, y X oraz α, β R. Jeżeli warunek α, β R zastąpimy warunkiem α, β C, to trójkę (X, +, ) nazywamy zespoloną przestrzenią wektorową. Elementy przestrzeni wektorowej nazywamy wektorami. 22
3 4.2. Podprzestrzeń wektorowa Przykład 4.3. Każda z poniższych struktur jest rzeczywistą przestrzenią wektorową: a) przestrzeń R n z naturalnymi działaniami dodawania wektorów oraz mnożenia wektora przez liczbę: (x 1,..., x n ) + (y 1,..., y n ) := (x 1 + y 1,..., x n + y n ), α (x 1,..., x n ) := (αx 1,..., αx n ) ; b) zbiór C z naturalnymi działaniami dodawania liczb zespolonych oraz mnożenia liczby zespolonej przez liczbę rzeczywistą; c) zbiór F (R, R) = {f : R R : f funkcja} z naturalnymi działaniami dodawania funkcji oraz mnożenia funkcji przez liczbę. Przykład 4.4. Poniższe struktury nie są przestrzeniami wektorowymi: a) zbiór R n z działaniami zdefiniowanymi poniżej: (x 1,..., x n ) + (y 1,..., y n ) := (x 1 + y 1,..., x n + y n ), α (x 1,..., x n ) := (αx 1, 0,..., 0) ; b) zbiór {f : R R : f (0) = 1} z naturalnymi działaniami dodawania funkcji oraz mnożenia funkcji { przez liczbę; } c) zbiór C 1 = {a n } n=1 : lim a n = 1 z działaniami zdefiniowanymi w przykładzie n Podprzestrzeń wektorowa Niech (X, +, ) będzie rzeczywistą przestrzenią wektorową oraz niech Y X. Definicja 4.2. Jeżeli zbiór Y oraz działania + i przestrzeni X spełniają warunki: α, β R, x, y Y α x + β y Y ; 0 Y, to trójkę (Y, +, ) nazywamy podprzestrzenią wektorową przestrzeni (X, +, ). Łatwo pokazać, że każda podprzestrzeń wektorowa przestrzeni wektorowej jest przestrzenią wektorową. Przykład 4.5. Zbiór {z C : 2Rez 3Imz = 0} z naturalnymi działaniami dodawania oraz mnożenia liczby zespolonej przez liczbę rzeczywistą jest podprzestrzenią wektorową przestrzeni C. Przykład 4.6. Zbiór {f F (R, R) : x R : f (x) = f ( x)} z naturalnymi działaniami dodawania funkcji oraz mnożenia funkcji przez liczbę jest podprzestrzenią wektorową przestrzeni wektorowej F (R, R). Bezpośrednio z definicji wynika, że zbiór pusty tworzy przestrzeń wektorową, ale nie jest podprzestrzenią wektorową żadnej przestrzeni. Przykład 4.7. Niech (X, +, ) będzie niepustą przestrzenią wektorową. Wówczas ({0}, +, ) jest najmniejszą (w sensie liczby elementów) podprzestrzenią wektorową przestrzeni (X, +, ). 23
4 4.3. Liniowa niezależność wektorów 4.3. Liniowa niezależność wektorów Niech (X, +, ) będzie rzeczywistą lub zespoloną przestrzenią wektorową. Definicja 4.3. Wektory v 1,..., v n X są liniowo niezależne nad ciałem F, jeżeli dla dowolnych skalarów α 1,..., α n F zachodzi: α 1 v α n v n = 0 α 1 =... = α n = 0. (4.1) Wektory, które nie są liniowo niezależne są liniowo zależne. Wyrażenie α 1 v α n v n nazywamy kombinacją liniową wektorów v 1,..., v n. Liniowa zależność wektorów oznacza, że przynajmniej jeden z nich jest kombinacją liniową pozostałych. Zauważmy, że lewa strona implikacji (4.1) to równanie ze względu na nieznane liczby α 1,..., α n. Jeżeli jedynym rozwiązaniem tego równania jest rozwiązanie zerowe, tj. α 1 =... = α n = 0, to na podstawie powyższej definicji wektory v 1,..., v n są liniowo niezależne. Przykład 4.8. Aby sprawdzić liniową niezależność wektorów v 1 = (1, 0, 1), v 2 = ( 1, 1, 1), v 3 = (3, 1, 3) nad ciałem R, należy rozwiązać, wynikające z warunku (4.1), równanie α 1 (1, 0, 1) + α 2 ( 1, 1, 1) + α 3 (3, 1, 3) = (0, 0, 0) ze względu na niewiadome α 1, α 2, α 3 R. Równanie to prowadzi do układu równań α 1 α 2 + 3α 3 = 0 α 2 α 3 = 0, α 1 + α 2 3α 3 = 0 którego rozwiązaniem jest: α 1 = 2t, α 2 = α 3 = t (t R). Oznacza to, że warunek (4.1) nie jest spełniony; badane wektory są więc liniowo zależne. Faktycznie, z postaci rozwiązania wynika, że v 2 = 2v 1 v 3. Przykład 4.9. Sprawdzimy liniową niezależność wektorów v 1 = 1 + i oraz v 2 = 2 3i nad ciałem R. Mamy 0 = α 1 (1 + i) + α 2 (2 3i) = α 1 + 2α 2 + (α 1 3α 1 ) i, co prowadzi do układu równań { α1 + 2α 2 = 0 α 1 3α 1 = 0, którego jedynym rozwiązaniem jest α 1 = α 2 = 0. Oznacza to, że wektory 1 + i oraz 2 3i są liniowo niezależne nad R. 24
5 4.4. Baza i wymiar przestrzeni wektorowej Przykład Sprawdzimy liniową niezależność wektorów rozważanych w poprzednim przykładzie, ale nad ciałem C. Mamy 0 = α 1 (1 + i) + α 2 (2 3i). Tym razem jednak skalary α 1, α 2 mogą przyjąć wartości zespolone. Przekształcając powyższe równanie do postaci α 1 = 2 3i 1 + i α 2, wnioskujemy, że posiado ono nieskończenie wiele rozwiązań. Oznacza to, że wektory 1 + i oraz 2 3i są liniowo zależne nad C Baza i wymiar przestrzeni wektorowej Niech v 1,..., v n będą ustalonymi wektorami przestrzeni wektorowej X. Jeżeli każdy element przestrzeni X można wyrazić jako kombinację liniową wektorów v 1,..., v n, tzn. dla dowolnego y X y = α 1 v α n v n, (4.2) dla pewnych skalarów α 1,..., α n, to mówimy, że wektory v 1,..., v n generują przestrzeń X. Każdy liniowo niezależny układ (ciąg istotna kolejność) wektorów przestrzeni wektorowej X generujący tę przestrzeń nazywamy bazą tej przestrzeni. Liczbę elementów bazy przestrzeni wektorowej X oznaczamy dim X i nazywamy wymiarem przestrzeni wektorowej ( 2 ). Przykład Rozważmy przestrzeń liniową (R n, +, ) nad ciałem liczb rzeczywistych. Dla dowolnego wektora (x 1,..., x n ) R n mamy: (x 1,..., x n ) = (x 1, 0,..., 0) + (0, x 2, 0,..., 0) (0,..., 0, x n ) = x 1 (1, 0,..., 0) + x 2 (0, 1, 0,..., 0) x n (0,..., 0, 1), zatem wektory e 1 = (1, 0,..., 0), e 2 = (0, 1, 0,..., 0),..., e n = (0,..., 0, 1) generują przestrzeń R n ; ponieważ wektory te są również liniowo niezależne, więc stanowią one bazę przestrzeni R n jest to tzw. baza kanoniczna. Wniosek: dim R n = n. Przykład Rozważmy przestrzeń liniową (C, +, ) nad ciałem liczb rzeczywistych. Z postaci kanonicznej liczby zespolonej wynika, że każda liczba zespolona jest kombinacją liniową wektorów 1, i; wektory te, w rozważanym przypadku (jaki to przypadek?), są liniowo niezależne, więc stanowią bazę przestrzeni C. Wniosek: dim R C =2. Przykład Rozważmy przestrzeń liniową (C, +, ), tym razem nad ciałem liczb zespolonych. Niech z 0 0 będzie dowolną liczbą zespoloną. Wówczas dla dowolnej liczby zespolonej z C: z = α 0 z 0, gdzie α 0 = zz W sytuacji, gdy nie jest jasne nad jakim ciałem rozważamy daną przestrzeń liniową X, jej wymiar oznaczać będziemy dim F X wskazując, że jest to przestrzeń liniowa nad ciałem F. 25
6 4.4. Baza i wymiar przestrzeni wektorowej Oznacza to, że w rozważanym przypadku z 0 jest bazą przestrzeni C. Wniosek: dim C C =1. Ważnym wnioskiem wynikającym z dwóch ostatnich przykładów jest to, że wymiar przestrzeni wektorowej zależy od ciała, nad którym przestrzeń ta jest rozważana. Przykład Niech Y = {(x, y, z) R 3 : x + y z = 0, x + y + z = 0}. Łatwo wykazać, że Y jest podprzestrzenią liniową przestrzeni R 3 ; wyznaczmy więc jej bazę. Rozwiązując układ równań wynikający z warunku określającego przynależność do przestrzeni Y, otrzymamy: x = t, y = t, z = 0 (t R). Dowolny element przestrzeni Y ma więc postać: (t, t, 0) = t (1, 1, 0). Oznacza to, że Y jest jednowymiarową podprzestrzenią przestrzeni R 3, której bazą jest wektor (1, 1, 0). Przykład Niech Π n oznacza zbiór wielomianów rzeczywistych stopnia nie większego niż n. Łatwo sprawdzić, że struktura (Π n, +, ), gdzie + oraz to naturalne działania dodawania funkcji oraz mnożenia funkcji przez liczbę, jest przestrzenią wektorową nad R. Bazę tej przestrzeni tworzą jednomiany: 1, x, x 2,..., x n ; mamy więc: dim Π n = n + 1. Niech teraz, dla a R, Π n (a) = {w Π n : w (a) = 0}. Łatwo wykazać, że Π n (a) jest podprzestrzenią liniową przestrzeni Π n. Z twierdzenia Bézout wynika, że dowolny element w Π n (a) można zapisać w postaci w (x) = (x a) g (x), (4.3) dla pewnego g Π n 1. Ponieważ bazą Π n 1 są jednomiany 1, x, x 2,..., x n 1, zatem na podstawie (4.3), wielomian w jest kombinacją liniową wielomianów x a, x (x a), x 2 (x a),..., x n 1 (x a). Wielomiany te są liniowo niezależne (dlaczego?), zatem stanowią bazę przestrzeni Π n (a). Wniosek: dim Π n (a) = n. Ćwiczenie Wyznacz bazę przestrzeni Π n (a) w przypadku, gdy a C\R. Współczynniki α 1,..., α n występujące w równaniu (4.2) nazywamy współrzędnymi wektora y w bazie v 1,..., v n. Współrzędne te są wyznaczone w sposób jednoznaczny. Aby to wykazać, przypuśćmy, że wektor y określony równaniem (4.2) można również zapisać w postaci y = β 1 v β n v n. (4.4) Pokażemy, że wówczas α i = β i (i = 1,..., n). Z zależności (4.2) i (4.4) otrzymujemy 0 = α 1 v α n v n (β 1 v β n v n ) = (α 1 β 1 ) v (α n β n ) v n. 26
7 4.4. Baza i wymiar przestrzeni wektorowej Liniowa niezależność wektorów v 1,..., v n prowadzi do warunków α i β i = 0 (i = 1,..., n). Własności bazy przestrzeni wektorowej: (i) Każda nietrywialna przestrzeń wektorowa posiada bazę. (ii) Jeżeli wektory v 1,..., v n są bazą pewnej przestrzeni liniowej, to dla dowolnych niezerowych skalarów α 1,..., α n wektory α 1 v 1,..., α n v n również są bazę tej przestrzeni. (iii) Wszystkie bazy tej samej przestrzeni wektorowej są równoliczne, tj. składają się z takiej samej liczby elementów. (iv) Wektory v 1,..., v n n wymiarowej przestrzeni liniowej są jej bazą wtedy i tylko wtedy, gdy są wektorami liniowo niezależnymi. (v) Każdy układ wektorów liniowo niezależnych przestrzeni wektorowej X może być rozszerzony do bazy przestrzeni X. 27
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Kryptografia - zastosowanie krzywych eliptycznych
Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A
Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Przestrzeń liniowa. Algebra. Aleksander Denisiuk
Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Przestrzeń liniowa i przekształcenie liniowe
opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Zestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Kurs wyrównawczy - teoria funkcji holomorficznych
Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
2.7 Przestrzenie unormowane skończenie wymiarowe
2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Skończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
ALGEBRA Tematyka LITERATURA
ALGEBRA Tematyka Podstawowe pojęcia algebry: działania, własności działań. Struktury algebraiczne: grupy, pierścienie, ciała, przestrzenie liniowe. Ciała liczbowe: ciało liczb wymiernych, ciało liczb rzeczywistych,
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)