ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY
|
|
- Eleonora Pietrzyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, Typeset by Jakub Szczepanik.
2 Geometryczne intuicje Dla pierścienia R = R mamy geometryczną intuicję wprowadzanych pojęć: Wektory (1, 0) i (0, 1): R R 2 = R R 1 są liniowo niezależne: (1, 0) r(0, 1), 1 (0,1) 2 rozpinają R 2 : (a, b) = a(1, 0) + b(0, 1), (1,0) 3 tworzą bazę R 2 : spełniają 0 1 R powyższe 2 warunki. Wektory (1, 2) i (2, 4) nie są liniowo niezależne: (2, 4) = 2(1, 2). Nie rozpinają też R 2 : a(1, 2) + b(2, 4) = (a + 2b)(1, 2), a (1, 1) r(1, 2). 2/10
3 Liniowa niezależność Definicja Niech R będzie dowolnym pierścieniem, a M dowolnym lewym R-modułem. Niech S M. Podzbiór S nazywamy liniowo niezależnym, a o jego elementach mówimy że są liniowo niezależne, wtedy i tylko wtedy gdy dla każdego skończonego podzbioru I S: r m m = 0 = m I : r m = 0. m I Jeśli powyższa implikacja zachodzi dla skończonego zbioru I, to zachodzi też dla każdego podzbioru J I: r m m = 0 = r m m + 0n = 0 = r m = 0. m J m J m J n I\J Dlatego, jeśli zbiór S jest skończony, wystarczy definiować liniową niezależność przez warunek r m m = 0 = m S : r m = 0. m S 3/10
4 Rozpinanie 4/10 Jeżeli podzbiór S jest liniowo niezależny, to 0 / S lub R = 0. Zbiory które nie są liniowo niezależne nazywamy liniowo zależnymi, a elementy zbiorów liniowo zależnych nazywamy liniowo zależnymi. Definicja Niech R będzie pierścieniem, M lewym R-modułem oraz S M. Przestrzenią rozpinaną przez S nazywamy zbiór wszystkich skończonych kombinacji liniowych elementów S: { span(s) := r m m M m S m S : r m R, tylko skończona ilość r m 0 }. Podzbiór span(s) jest podmodułem M: r m m + s m m = (r m + s m )m span(s), m S m S m S r r m m = m )m span(s). m S m S(rr
5 Pierścień jako lewy moduł nad sobą 5/10 Rozważmy pierścień R jako lewy moduł nad sobą. Wtedy span({r}) = R s R : sr = 1. Istotnie, 1 R = span({r}) s R : sr = 1. Z drugiej strony, s R : sr = 1 = r R : r = r 1 = r (sr) = (r s)r span({r}). Niech R będzie niezerowym pierścieniem bez dzielników zera. Wtedy jedyne lewo-odwracalne wielomiany w R[N] to α R \ {0}. Zaiste, α 0 oraz 0 = deg(1) = deg(β α) = deg(β) + deg(α) implikuje α R \ {0}. Zatem, rozważając R[N] jako lewy R[N]-moduł, mamy n N \ {0} : span({x n }) R[N].
6 Lemat Q jako Z-moduł Rozważmy Q jako Z-moduł. Podzbiór S Q jest liniowo niezależny S = {r}, gdzie r 0. Dowód: Zauważmy najpierw że r 0 (nr = 0 n = 0). Jeśli p q, p q S, p q p q, to qp p q + ( q p) p q = 0, a nie jest prawdą że qp = q p = 0, bo wtedy p q = 0 = p q, co przeczy p q p q. Lemat Rozważmy Q jako Z-moduł. Niech S Q. Wtedy, jeżeli span(s) = Q, to zbiór S nie jest skończony. { Dowód: Niech S = p1 q 1,..., pn, gdzie wszystkie ułamki p i q i są w postaci względnie pierwszej (tzn. gcd(p i, q i ) = 1 i q i > 0). Wtedy x span(s) = x = n p i=1 k i (...) i q i = q 1 q 2...q n. Zatem x span(s) : mianownik x zapisanego w postaci względnie 1 pierwszej jest q 1 q 2...q n. Stąd Q (q 1...q / span(s). n)+1 q n } 6/10
7 Baza 7/10 Definicje Niech R będzie dowolnym pierścieniem, a M dowolnym R-modułem. Niepusty podzbiór B M nazywamy bazą M 1 B jest zbiorem liniowo niezależnym, 2 span(b) = M. Moduł nazywamy wolnym posiada bazę. Twierdzenie Modułem Q liczb wymiernych nie posiada bazy nad Z (nie jest modułem wolnym nad Z). Dowód: Żaden zbiór nie może być równocześnie jednoelementowy i nieskończony.
8 Elementarne fakty 8/10 1 Każdy pierścień R (nawet zerowy) jest wolnym R-modułem. Zbiór {1} jest zawsze bazą R. 2 Dowolna suma prosta i I R jest wolnym R-modułem. Bazą (kanoniczną) jest zbiór {f i Map(I, R) i, j I : f i (j) = δ ij }, gdzie δ ij jest deltą Kroneckera, tzn. δ ij = { 1 dla i = j 0 dla i j. Jeśli I = N, piszemy f i = (0,..., 0, 1, 0,...). Jeśli I = {1,..., n}, piszemy i I R = Rn. Moduł R n jest prototypem modułu wolnego, a zbiór prototypem bazy. {(1, 0,..., 0), (0, 1, 0,..., 0),..., (0,..., 0, 1)}
9 Twierdzenie o bazie 9/10 Twierdzenie Jeśli M jest wolnym R-modułem z bazą B, to odwzorowanie e B jest izomorfizmem R-modułów. R f F B f(e) e M e B Dowód: Odwzorowanie F B jest ewidentnie liniowe. Skonstruujemy odwzorowanie odwrotne FB 1. Zauważmy że m M \ {0}! {r 1,..., r Nm } R \ {0}, {e 1,..., e Nm } B : m = Istotnie, przypuśćmy że mamy 2 rozkłady m 0: r e e = m = s e e. e I e J N m k=1 r k e k.
10 Dowód twierdzenia o bazie Wtedy 0 = m m = k I J (r k s k ) k + Z liniowej niezależności wynika że e I\J r e e + e J\I ( s e ) e. k I J : r k = s k, e I\J : r e = 0, e J\I : s e = 0. Zatem, z założenia niezerowości współczynników, I = J i rozkład m 0 w bazie jest jednoznaczny. Jest też zawsze niezerowy, więc przypsując 0 M rozkład zerowy mamy jednoznaczność rozkładu w bazie dla wszystkich m M. Możemy więc zdefiniować M m F 1 B f m R, gdzie f m (e) e := m. e N e B Jest oczywiste że F B F 1 B 1 = id i FB F B = id. 10/10
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH
ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIEŃ WIELOMIANÓW Piotr M. Hajac Uniwersytet Warszawski Wykład 6, 6.11.2013 Typeset by Jakub Szczepanik. Plan 2/10 1 Co to są wielomiany i jak się je mnoży? 2 Co to jest stopień
ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH Piotr M Hajac Uniwersytet Warszawski Wykład 8, 27112013 Typeset by Jakub Szczepanik Motywacja 2/10 Przechodzimy od rozwiązywania jednego równania
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Twierdzenie spektralne
Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
4. Granica i ciągłość funkcji
4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Przestrzeń liniowa. Algebra. Aleksander Denisiuk
Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
CO TO SĄ BAZY GRÖBNERA?
CO TO SĄ BAZY GRÖBNERA? Wykład habilitacyjny, Toruń UMK, 5 czerwca 1995 roku Andrzej Nowicki W. Gröbner, 1899-1980, Austria. B. Buchberger, Austria. H. Hironaka, Japonia (medal Fieldsa). Bazy, o których
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Przestrzeń liniowa i przekształcenie liniowe
opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
R k v = 0}. k N. V 0 = ker R k 0
Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Podzielność liczb. Podzielność liczb
Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Łatwy dowód poniższej własności pozostawiamy czytelnikowi.
Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Działania na przekształceniach liniowych i macierzach
Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x