1 Przestrzeń liniowa. α 1 x α k x k = 0
|
|
- Agata Cieślik
- 7 lat temu
- Przeglądów:
Transkrypt
1 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek próbował opisać przestrzeń, w której żyjemy oraz poznać jej własności. Matematyzacja pojęcia przestrzeni fizycznej nie jest zagadnieniem prostym i jednoznacznym. Punktem wyjścia do poznania różnorodnych przestrzeni fizycznych jest pojęcie przestrzeni liniowej, zwanej również przestrzenią wektorową. Ruch punktów w przestrzeni wyznaczony jest przez funkcje opisujące ich przemieszczenie. Tego typu funkcje nazywamy przekształceniami przestrzeni. Ze względu na prawa zachowania ważną rolę odgrywają przekształcenia liniowe i dlatego ich opisowi należy poświęcić należną uwagę. Zbiór X z wyróżnionym elementem 0 nazywamy przestrzenia liniową (albo wektorową) nad zbiorem liczb rzeczywistych R lub zespolonych C oznaczanym dalej przez K, jeżeli określone zostały działania dodawania elementów zbioru X oraz działanie mnożenia elementów zbioru X przez elementy z K spełniające następujące warunki: (L) x + y = y + x, (L2) (x + y) + z = x + (y + z), (L3) 0 + x = x, (L4) dla każdego x istnieje y takie, że x + y = 0, (L5) α(βx) = (αβ)x, (L6) α(x + y) = αx + αy, (L7) (α + β)x = αx + βx, (L8) x = x, gdzie x, y, z X i α, β K. Elementy przestrzeni X nazywamy wektorami, a element 0 nazywamy wektorem zerowym. Elementy zbioru K nazywamy skalarami. Z warunków (L) (L4) wynika natychmiast, że dla każdego x X istnieje dokładnie jeden element przeciwny x, tj. spełniający warunek x + ( x) = 0. Wektory x,..., x k nazywamy liniowo niezależnymi, jeżeli z warunku α x α k x k = 0 dla pewnych skalarów α,..., α k wynika, że α = α 2 =... = α k = 0. W przeciwnym przypadku, a więc, gdy wcześniejsze równanie ma inne rozwiązania
2 niż α = α 2 =... = α k = 0, wektory x,..., x k nazywamy liniowo zależnymi. Sumę k i= α i x i nazywamy kombinacją liniową wektorów x,..., x k. Zbiór wektorów V X nazywamy liniowo niezależnym, jeżeli wektory należące do dowolnego skończonego podzbioru V są liniowo niezależne. Zbiór wektorów V rozpina przestrzeń X, jeżeli dowolny wektor x X jest kombinacją liniową pewnych wektorów ze zbioru V. Jeżeli zbiór wektorów V jest liniowo niezależny i rozpina przestrzeń X, to mówimy, że zbiór V jest bazą przestrzeni X. W szczególności, wektory x,..., x k są bazą w przestrzeni X, wtedy i tylko wtedy, gdy dla każdego wektora x X istnieje dokładnie jeden ciąg skalarów α,..., α k taki, że x = α x α k x k. Każda przestrzeń liniowa ma bazę i ilość wektorów w bazie nie zależy od jej wyboru. Jeżeli baza przestrzeni X składa się z k-wektorów, to k nazywamy wymiarem przestrzeni X i piszemy dim X = k (czytamy wymiar X jest równy k ). Mówimy wtedy, że X jest przestrzenią k-wymiarową. Wymiar przestrzeni X oznaczamy przez dim X. Podzbiór X 0 przestrzeni liniowej X nazywamy podprzestrzenią liniową, jeżeli jest zamknięty ze względu na działania w przestrzeni X, tj. x+y X 0 i αx X 0 dla dowolnych x, y X 0 oraz α K. 2 Przykłady przestrzeni liniowych. Przestrzeń R n nad zbiorem R z działaniami (x,..., x n ) + (y,..., y n ) = (x + y,..., x n + y n ), α(x,..., x n ) = (αx,..., αx n ) i wektorem zerowym 0 = (0,..., 0) jest przestrzenią liniową. Na przykład płaszczyznę można utożsamiać z przestrzenią R 2, zaś to co w języku potocznym nazywamy przestrzenią można utożsamić z R 3. Para wektorów e = (, 0) i e 2 = (0, ) w R 2 jest liniowo niezależna. Dowolny wektor x = (x, x 2 ) można przedstawić w postaci x = x e + x 2 e 2, 2
3 a więc zbiór {e, e 2 } jest bazą. Ogólnie, zbiór wektorów postaci e = (, 0,..., 0), e 2 = (0,,..., 0),..., e n = (0, 0,..., ) jest bazą w przestrzeni R n. Taką bazę nazywamy bazą kanoniczną w R n. Nie każda para wektorów w przestrzeni R 2 jest bazą. Na przykład wektory (, 0) i (2, 0) są liniowo zależne i nie tworzą bazy. 2. Przestrzeń C n nad zbiorem C lub nad zbiorem R z wprowadzonymi poprzednio działaniami dodawania i mnożenia przez skalar i wektorem zerowym 0 = (0,..., 0) jest przestrzenią liniową. W przypadku, gdy przestrzeń C n jest określona nad zbiorem C, to podobnie jak poprzednio zbiór {e, e 2,..., e n } jest bazą w tej przestrzeni, a więc jest to przestrzeń n-wymiarowa. Jeżeli przestrzeń C n jest określona nad zbiorem R, to zbiór {e, e 2,..., e n, ie, ie 2,..., ie n } jest bazą w tej przestrzeni, a więc jest to przestrzeń 2n-wymiarowa. 3. Niech E będzie dowolnym zbiorem i niech X będzie przestrzenią funkcji z E w R. Wtedy przestrzeń X z działaniami dodawania funkcji i mnożenia funkcji przez liczbę rzeczywistą oraz z funkcją f 0 jako elementem zerowym jest przestrzenią liniową. Zauważmy, że jeżeli E = {, 2,..., n}, to X = R n, bo funkcję f: E R możemy utożsamić z ciągiem (f(), f(2),..., f(n)). Podobnie, jeżeli E jest zbiorem liczb naturalnych, to przestrzeń X jest przestrzenią ciągów nieskończonych. W przyszłości poznamy inne przestrzenie funkcji tworzące przestrzenie liniowe. Poza przypadkiem, gdy E jest zbiorem skończonym, nie można efektywnie wypisać bazy w przestrzeni X. 3 Przekształcenie liniowe Niech X będzie przestrzenią liniową nad zbiorem K i niech Y będzie przestrzenią liniową nad zbiorem K. Odwzorowanie S: X Y nazywamy odwzorowaniem liniowym, jeżeli S(αx + βy) = αs(x) + βs(y) dla dowolnych x, y X i α, β K. Jeżeli S jest odwzorowaniem liniowym, to często piszemy Sx zamiast S(x). 3
4 Przekształcenie liniowe można wyznaczyć wiedząc jak działa na wektorach z dowolnej bazy. Ograniczymy się do odwzorowania liniowego S: R n R m. Niech v,..., v n będzie bazą w przestrzeni R n i niech w,..., w m będzie bazą w przestrzeni R m. Dla dowolnego i n wektor Sv i jest elementem przestrzeni R m, a więc istnieje ciąg liczb rzeczywistych a i, a 2i,..., a mi taki, że Sv i = a i w + a 2i w a mi w m. Niech teraz x będzie dowolnym wektorem z R n. Wtedy istnieją stałe x,..., x n, zwane współrzędnymi wektora x w bazie v,..., v n takie, że x = x v x n v n. Z definicji odwzorowania liniowego otrzymujemy Sx = S(x v x n v n ), a stąd Sx = x Sv x n Sv n, a więc wyznaczyliśmy wektor Sx znając wartości odwzorowania S na wektorach bazowych. Korzystając z ostatniego wzoru oraz z przedstawienia wektorów Sv i w bazie w,..., w m możemy również wyznaczyć przedstawienie wektora Sx w bazie w,..., w m : ( m ) ( m Sx = x a i w i x n a in w i ). i= i= Zmieniając kolejność sumowania otrzymujemy n m m ( n Sx = a ij x j w i = a ij x j )w i. j= i= i= j= 4 Przykłady przekształceń liniowych Graficzną reprezentaję działania przekształcenia można w Sage otrzymać transformując krzywą daną parametrycznie i rysując obie krzywe za pomocą parametric_plot. Na przykład weźmy okrąg jednostkowy: 4
5 var( t ) x=( cos(t), sin(t) ) wykonując przekształcenie następującym poleceniem: y=(x[0]+x[],x[]+) otrzymujemy wektor y(t) dany przez: (sin (t) + cos (t), sin (t) + ). Wektory x(t) oraz y(t) można narysować używająć parametric_plot( x,(t,0,2*pi))+\ parametric_plot( y,(t,0,2*pi)) W dalszej części przykładów zostanie użyta funkcja: def show_transform(t,**reszta): var( t ) Identycznosc=lambda w:w k=vector((cos(t),sin(t)++0.)) k2=vector((.2*cos(t)+.4,.2*sin(t)+.4)) k3=vector((.2*cos(t)-.4,.2*sin(t)+.4) ) k4=vector((.5*cos(t),.2*sin(t)+.5) ) ks=[k,k2,k3,k4] colors=[ gray, red, blue, green ] pltlist=[] for T in [Identycznosc,T]: ks_transformed = map(t,ks) p=[ \ parametric_plot(k,(t,0,2*pi),\ figsize=3,fill=true,\ fillcolor=colors[i%len(colors)],\ color=colors[i%len(colors)],**reszta) \ for i,k in enumerate(ks_transformed)] pltlist.append(sum(p)) return pltlist 5
6 Rysunek : Przekształcenie liniowe: symetria osiową względem prostej x = Symetria osiowa Rozważmy odwzorowanie liniowe : S: R 2 R 2 określone na wektorach bazowych e, e 2 wzorami S(, 0) = (, 0), S(0, ) = (0, ). Wtedy S jest symetrią osiową względem prostej x = 0. Tlin=lambda (x,y):vector((-x,y)) pltlist=show_transform(tlin) 4.2 Symetria względem punktu (0, 0) Rozważmy odwzorowanie liniowe : S: R 2 R 2 określone wzorami S(, 0) = (, 0), S(0, ) = (0, ). Wtedy S jest symetrią względem punktu (0, 0). Tlin=lambda (x,y):vector((-x,-y)) pltlist=show_transform(tlin) 6
7 Rysunek 2: Symetria względem punktu (0, 0). 4.3 Obrót Niech α będzie ustalonym kątem. Wtedy odwzorowanie liniowe : S: R 2 R 2 określone wzorami S(, 0) = (cos α, sin α), S(0, ) = ( sin α, cos α) jest obrotem względem początku układu współrzędnych o kąt α przeciwnie do ruchu wskazówek zegara. phi=pi/5 Tlin=lambda (x,y):vector((cos(phi)*x+sin(phi)*y,\ -sin(phi)*x+cos(phi)*y )) pltlist=show_transform(tlin) 7
8 Rysunek 3: Obrót o π/ Jednokładność Ustalmy k > 0. Wtedy odwzorowanie liniowe : S: R n R n określone wzorem Sx = kx jest jednokładnością w skali k względem początku układu współrzędnych. k= Tlin=lambda (x,y):vector((k*x,k*y)) pltlist=show_transform(tlin) pltlist[0].axes_range(-,,0,2.2) pltlist[].axes_range(-,,0,2.2) 8
9 Rysunek 4: Jednokładność dla k =. 4.5 Rzut Niech S: R 3 R 2 będzie odwzorowaniem danym wzorem S(x, x 2, x 3 ) = (x, x 2 ). Wtedy S jest rzutem prostopadłym z R 3 na R 2. Pokażmy to graficznie dla S: R 2 R Tlin=lambda (x,y):vector((x,0)) pltlist=show_transform(tlin,thickness=5) pltlist[0].axes_range(-.,.,0,2.2) pltlist[].axes_range(-.,.,0,2.2) 9
10 Rysunek 5: Rzut równoległy na oś x. 4.6 Przekształcenie nieliniowe Przekształcenie nieliniowe S: R 2 R 2 może zawierać dowolne funkcje wpólrzędnych punktów. Zobaczmy jak będzie wyglądać figura wyjściowa po działaniu przekształcenia S(x, x 2 ) = (x, sin(2x 2 )). W Sage funkcja defniujące wygląda następująco: Tnonlin=lambda (x,y):vector((x,sin(y*2))) pltlist=show_transform(tnonlin) Na rysunku 6 widzimy podstawowe różnice w działaniu powyższego przekształcenia a poprzednimi liniowymi: obrazy trzech nieprzecinających się okręgów mogą się przecinać a rozciąganie i przesuwanie figur zachodzi w niejednorodny sposób. 0
11 Rysunek 6: Przekształcenie nieliniowe S(x, x 2 ) = (x, sin(2x 2 )). 4.7 Iloczyn skalarny w R n Niech (a,..., a n ) będzie ustalonym wektorem w przestrzeni R n. Odwzorowanie S: R n R określone wzorem Sx = a x + a 2 x a n x n jest odwzorowaniem liniowym, zaś sumę a x + a 2 x a n x n nazywamy iloczynem skalarnym wektorów a i x. Iloczyn skalarny wektorów a, x oznaczamy a, x lub a x. W Sage możemy pokazać, że definiując: var( y y2 c x x2 a a2 ) x=vector([x,x2]) y=vector([y,y2]) a=vector([a,a2]) wlasnosci=[(x+y).dot_product(a)==x.dot_product(a)+y.dot_product(a)\, (c*x).dot_product(a)==c*x.dot_product(a)] zachodzą następujące własności: - (x 2 + y 2 )a 2 + (x + y )a = a x + a y + a 2 x 2 + a 2 y 2 ma wartość logiczną: bool(wlasnosci[0])= True
12 - a cx +a 2 cx 2 = (a x + a 2 x 2 )c ma wartość logiczną: bool(wlasnosci[])= True 4.8 Iloczyn skalarny w C n Niech (a,..., a n ) będzie ustalonym wektorem w przestrzeni C n. Określmy odwzorowanie S: C n C wzorem Sz = z ā + z 2 ā z n ā n, gdzie ā i jest liczbą sprzężoną do a i. Odwzorowanie S jest liniowe. Sumę z, a = z ā + z 2 ā z n ā n nazywamy iloczynem skalarnym wektorów z i a. Jeżeli zamiast odwzorowania S rozważymy odwzorowanie T z = a z + a 2 z a n z n, to T (z + z ) = T z + T z oraz T (αz) = ᾱ T z. Odwzorowanie spełniające powyższe dwa warunki nazywamy antyliniowym. 4.9 Przestrzenie funkcji Niech X będzie przestrzenią funkcji z E w R i niech ϕ będzie dowolną funkcją z E w E. Wtedy odwzorowanie S: X X określone wzorem Sf(x) = f(ϕ(x)) jest odwzorowaniem liniowym. 5 Jądro i obraz przekształcenia Niech S: X Y będzie przekształceniem liniowym. Wtedy zbiór Ker S = {x X: S(x) = 0} nazywamy jądrem odwzorowania S, a zbiór Im S = {S(x): x X} nazywamy obrazem odwzorowania S. Jądro i obraz przekształcenia liniowego są podprzestrzeniami liniowymi, odpowiednio, przestrzeni X i Y. 2
13 Jeżeli Ker S = {0}, to odwzorowanie S jest różnowartościowe, a więc z warunku S(x) = S(y) wynika, że x = y. Wymiar jądra i obrazu odwzorowania S spełniają warunek dim Ker S + dim Im S = n. 3
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowoPrzestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Bardziej szczegółowoPrzestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoWykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Bardziej szczegółowoPrzestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Bardziej szczegółowocx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowo14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Bardziej szczegółowoInformacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Bardziej szczegółowoZadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Bardziej szczegółowoR n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Bardziej szczegółowoPrzestrzenie liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku
Bardziej szczegółowoAkwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoPrzestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Bardziej szczegółowo9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Bardziej szczegółowo2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowo3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowoWykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Bardziej szczegółowoPrzestrzeń liniowa. Algebra. Aleksander Denisiuk
Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.
Bardziej szczegółowoφ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Bardziej szczegółowoZadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Bardziej szczegółowo1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Bardziej szczegółowoLista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Bardziej szczegółowoPrzekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowoInformatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
Bardziej szczegółowoEndomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Bardziej szczegółowo4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Bardziej szczegółowoZadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Bardziej szczegółowoWYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Bardziej szczegółowoz = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ
Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.
Bardziej szczegółowoPrzekształcenia liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się
Bardziej szczegółowoIloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Bardziej szczegółowoALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Bardziej szczegółowoR n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas
ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia
Bardziej szczegółowo3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
Bardziej szczegółowoLista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Bardziej szczegółowoGeometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Bardziej szczegółowoAlgebra linowa w pigułce
Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra
Bardziej szczegółowoFunkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Bardziej szczegółowoALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Bardziej szczegółowoUkłady równań liniowych, macierze, Google
Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie
Bardziej szczegółowoFunkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Bardziej szczegółowoAlgebra z geometrią Lista 1 - Liczby zespolone
Algebra z geometrią Lista 1 - Liczby zespolone 1. Oblicz a) (1 + i)(2 i); b) (3 + 2i) 2 ; c) (2 + i)(2 i); d) (3 i)/(1 + i); e) (1 + i 3)/(2 + i 3); f) (2 + i) 3 ; g) ( 3 i) 3 ; h) ( 2 + i 3) 2 2. Korzystając
Bardziej szczegółowoFUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoRozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Bardziej szczegółowoPokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Bardziej szczegółowoIloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Bardziej szczegółowoDB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Bardziej szczegółowoRównania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Bardziej szczegółowo1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Bardziej szczegółowoZestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
Bardziej szczegółowoMatematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Bardziej szczegółowoFunkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Bardziej szczegółowoLista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
Bardziej szczegółowoPraca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Bardziej szczegółowoZajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).
Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym
Bardziej szczegółowoWektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Bardziej szczegółowo1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoB jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Bardziej szczegółowoUkłady współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej szczegółowoBaza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoNiezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Bardziej szczegółowo1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
Bardziej szczegółowoPrzestrzeń liniowa i przekształcenie liniowe
opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające
Bardziej szczegółowoA,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Bardziej szczegółowo1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Bardziej szczegółowo1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Bardziej szczegółowo1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Bardziej szczegółowo1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
Bardziej szczegółowo1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
Bardziej szczegółowohttp://www-users.mat.umk.pl/~pjedrzej/matwyz.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego i opanowanie przez nich podstawowych pojęć dotyczących
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowoWyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoAlgebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
Bardziej szczegółowoZestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowo