Dziedziny Euklidesowe
|
|
- Zdzisław Janiszewski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla dowolnych a, b R \ {0}, v(ab) v(a), 2. dla dowolnych a R oraz b R \ {0} istnieja elementy q, r R, takie że a = bq + r oraz r = 0 lub v(r) < v(b). Zanim omówimy przyk lady dziedzin euklidesowych odnotujmy pewne proste w lasności waluacji Stwierdzenie. Niech v : R \ {0} N {0} be dzie waluacja. Wówczas, a) dla każdego a R \ {0}, v(a) v(1). b) dla dowolnych a, b R \ {0}, v(ab) = v(b) wtedy i tylko wtedy, gdy a jest elementem odwracalnym. c) dla dowolnego a R \{0}, v(a) = v(1) wtedy i tylko wtedy, gdy a jest elementem odwracalnym. Dowód. punkt a) jest oczywistym wnioskiem z definicji, zaś punkt c) wynika z punktu b). Zauważmy, że jeżeli a jest elementem odwracalnym i c elementem odwrotnym, to v(b) = v(cab) v(ab), zaś nierówność v(ab) v(b) wynika z definicji. Przypuśćmy, że v(ab) = v(b). Wówczas istnieje c R dla którego b = abc + r i v(r) < v(ab) lub r = 0. Jeżeli r 0, to r = b(ac 1) i z w lasności waluacji v(r) v(b). Ponieważ v(ab) = v(b), to dostajemy sprzeczność czyli r = 0 i 0 = b(ac 1). Sta d ac = 1 i a jest elementem odwracalnym. Przyk ladami dziedzin euklidesowych sa pierścień liczb ca lkowitych Z, gdzie waluacja jest wartość bezwzgle dna oraz pierścień wielomianów K[X] nad cia lem K, gdzie waluacja jest stopień wielomianu. Niech d Z be dzie liczba ca lkowita, d 1, która nie jest podzielna przez kwadrat liczby naturalnej różnej od 1 - taka liczbe nazywamy bezkwadratowa. Oznaczmy przez Z[ d] podpierścień cia la liczb zespolonych generowany przez d - jego elementami sa liczby postaci a + b d, a, b Z. Niech v : Z[ d] N v(a + b d) = a 2 b 2 d. Wprowadzmy oznaczenia: α = a + b d, ᾱ = a b d. Wówczas v(α) = αᾱ. Latwy rachunek przekonuje nas o tym, że v(αβ) = v(α)v(β) oraz, że α jest elementem odwracalnym wtedy i tylko wtedy, gdy v(α) = 1 i wówczas ᾱ jest elementem odwrotnym.
2 Stwierdzenie. Funkcja v(a + b d) = a 2 b 2 d jest waluacja euklidesowa na Z[ d] dla d { 2, 1, 2, 3} Dowód. Jest oczywiste, że v(a+b d) 1, gdyż v(a+b d) = 0 oznacza loby, że d = ( a b )2, wbrew za lożeniu, że d jest liczba bezkwadratowa. Sta d i z multyplilkatywności funkcji v wynika, że warunek pierwszy jest spe lniony dla dowolnego d. Pokażemy, że dla wymienionych wartości d w pierścieniu Z[ d] można dzielić z reszta. Dowód dostarcza także algorytm wykonywania takiego dzielenia. Niech α, β Z[ d], β 0. Wówczas α β = α β β β = x + y d Q[ d]. Niech r, s Z be da liczbami ca lkowitymi takimi, że x r 1 2 i y s 1 2. Niech γ = r + s d, zaś δ = ((x r) + (y s) d)β. Zauważmy, że α = βγ + δ przy czym α, β, γ Z[ d]. Zatem także δ Z[ d]. Wystarczy teraz pokazać, ze v(δ) < v(β) lub δ = 0. Przypuśćmy, że δ 0. Mamy v(δ) = v(β) (x r) 2 (y s) 2 d v(β)( d ). Dla d = { 2, 1, 2}, d < 1 i v(δ) < v(β). Jeżeli d = 3, to (x r)2 (y s) = 1. Równość może wysta pić tylko wtedy, gdy x r = y s = 1 2, jednak wówczas v( ) = 1 2 < 1, co dowodzi, że dla d = 3 waluacja także jest euklidesowa. ZADANIA Z 1.4. Niech K[[X]] oznacza pierścień szeregów formalnych nad cia lem K. Niech dla f 0, o(f) = min{n: a n 0}. Udowodnić, że: (a) o(fg) = o(f) + o(g) (b) f g wtedy i tylko wtedy gdy o(f) o(g) (c) f jest odwracalny wtedy i tylko wtedy gdy o(f) = 0 (d) jeżeli f 0, to f jest stowarzyszony z X o(f). (e) Czy o( ) jest waluacja Euklidesowa na K[[X]]? Z 1.5. Niech p be dzie liczba pierwsza i zdefiniujmy Z p = {(a 1, a 2,...) : a k (Z/p k Z), a k+1 a k (mod p k ), k 1} a) Pokazać, że Z p z operacjami dodawania i mnożenia po wspó lrze dnych jest pierścieniem z 1, zawieraja cym Z jako podpierścień. (jest to uzupe lnienie Z w metryce p-adycznej). b) Pokazać, że Z p jest pierścieniem Euklidesowym.
3 3 2. Dziedziny rozk ladu W pierścieniu liczb ca lkowitych Z podstawowym twierdzeniem jest zasadnicze twierdzenie arytmetyki mówia ce, że każda liczbe ca lkowita można przedstawić w postaci iloczynu liczb ca lkowitych pierwszych i że przedstawienie to jest jednoznaczne z dok ladnościa do kolejności czynników i ich znaku. Ważnym i naturalnym problemem jest pytanie dla jakich pierścieni możemy udowodnić podobne twierdzenie. Zaczniemy od wprowadzenia s lownika potrzebnych poje ć. W rozdziale tym zak ladamy, że rozpatrywane pierścienie sa dziedzinami ca lkowitości. Niech R bedzie dziedzina ca lkowitości.mówimy, że: a) Element a R \ {0} dzieli element b (co oznaczamy symbolem a b) wtedy i tylko wtedy gdy istnieje element c, taki że b = ca. b) Elementy a, b R \ {0} sa stowarzyszone (co oznaczamy symbolem a b tylko wtedy gdy istnieje odwracalny element u R dla którego a = bu. c) Element a R\{0} nieodwracalny jest nierozk ladalny wtedy i tylko wtedy, gdy z równości a = bc wynika, że b lub c jest elementem odwracalnym. d) Element a R\{0} nieodwracalny jest pierwszy wtedy i tylko wtedy, gdy z tego, że a bc wynika, że a b lub a c Stwierdzenie. Element pierwszy jest nierozk ladalny. Dowód. Niech a R \ {0} bedzie elementem pierwszym i przypuśćmy, że a = bc. Wówczas a b lub a c. Jeżeli a b, to b = ad i a = adc. Ponieważ R jest dziedzina ca lkowitosci i a 0, to cd = 1 i c elementem odwracalnym. Jeżeli a c to analogicznie wnioskujemy, ze bjest elementem odwracalnym Przyk lady. 1. W pierścieniu liczb ca lkowitych Z zbiór elementów pierwszych jest równy zbiorowi elementów nierozk ladalnych i sk lada sie z liczb pierwszych. 2. Liczba 2, która jest elementem pierwszym w pierścieni Z, nie jest elementem pierwszym w pierścieniu Z[ d], dla dowolnej liczby bezkwadratowej d. Mamy bowiem 2 d(d 1) = (d + )(d d), ale 2 (d + d) i 2 (d d). 3. Liczba 2 jest elementem nierozk ladalnym w pierścieniu Z[ d], dla d 3. Przypuśćmy przeciwnie, że 2 = αβ, gdzie α, β nieodwracalne. Wówczas v(2) = 4 = v(α)v(β). Z nieodwracalności v(α) 1 i v(β) 1, a wie c v(α) = v(β) = 2. Jeżeli α = x + y d, to x 2 y 2 d = 2, ale dla d 3, to nie jest mozliwe. Bowiem x 2 y 2 d x 2 + 3y 2 > 2 dla y 0, ale y 0, bo w przeciwnym razie 2 by laby kwadratem liczby naturalnej Stwierdzenie. W dziedzinie Euklidesowej każdy element nierozk ladalny jest pierwszy. Zanim udowodnimy to twierdzenie wzorem pierścienia liczb ca lkowitych wprowadzimy definicje Definicja. Niech R be dzie dziedzina ca lkowitości i niech = A R. Powiemy, że element d R jest najwie kszym wspólnym dzielnikiem (oznaczamy go symbolem NWD(A)) jeżeli a) dla każdego x A, d x, b) jeżeli e x dla każdego x A, to e d. Jeżeli NWD(A) = 1, to mówimy że zbiór A jest wzgle dnie pierwszy.
4 4 Zauważmy, ze z definicji wynika natychmiast, że jeżeli N W D(A) istnieje, to jest wyznaczony jednoznacznie z dok ladnościa do stowarzyszenia. W dziedzinach euklidesowych dysponujemy algorytmem, zwanym algorytmem Euklidesa, który pozwala na znalezienie N W D dowolnych dwóch elementów i tym samym dowodzi, ze istnieje N W D dowolnej skończonej liczby elementów. Możemy teraz przysta pić do dowodu stwierdzenia 2.3 Dowód. Niech a be dzie elementem nierozk ladalnym i niech a bc. Zastosujmy algorytm Euklidesa do dzielenia b i a znajduja c ich najwie kszy wspólny dzielnik d. Mamy a = de b = df dla pewnych e, f. Z nierozk ladalności a, element e lub d jest odwracalny. Jeżeli element e jest odwracalny, to d = ae 1 i b = ae 1 f i a b. Jeżeli d jest odwracalny, to d = ax + by dla pewnych x, y i mnoża c obie strony równości przez cd 1 otrzymujemy c = acd 1 x + bcd 1 y = acd 1 x + azd 1 y i a c Wniosek. Dziedzina Z[ d] nie jest dziedzina euklidesowa dla d 3. Sformu lujmy teraz g lówna definicje tego rozdzia lu Definicja. Dziedzina ca lkowitości R nazywa sie dziedzina rozk ladu (DJR) wtedy i tylko wtedy, gdy a) każdy element a R \ {0} może być przedstawiony w postaci iloczynu a = up 1... p k, gdzie u jest elementem odwracalnym, zaś p 1,..., p k sa elementami nierozk ladalnymi. b) rozk lad ten jest jednoznaczny z dok ladnościa do stowarzyszenia, to znaczy ze jeżeli a = up 1... p k = vq 1... q l sa rozk ladami, u, v sa elementami odwracalnymi, zaś p 1, dots, p k, q 1,..., q l nierozk ladalnymi, to k = l i po ewentualnym przenumerowaniu p i jest stowarzyszone z q i, 1 i k. Gru c nierozk ladalne elementy stowarzyszone możemy dowolny niezerowy element zapisać jednoznacznie ( z dok ladnościa do kolejności i stowarzyszenia) w postaci: a = up k pk s s, gdzie p i nie jest stowarzyszone z p j, dla i j. Zauważmy, ze w DJR jest tak, jak w pierścieniu liczb ca lkowitych, to znaczy Stwierdzenie. Jeżeli R jest dziedzina rozk ladu, to każdy element nierozk ladalny jest pierwszy. Dowód. Niech a be dzie elementem nierozk ladalnym i niech a bc. Zatem ad = bc, dla pewnego elementu d. Elementy b, c, d przedstawiamy w postaci iloczynu czynników nierozk ladalnych. Z jednoznaczności rozk ladu wynika, że po prawej stronie musi znaleźć sie czynnik stowarzyszony z a. Jest jasne, że informacja iż dany pierścień jest dziedzina rozk ladu bardzo pomaga badać jego w lasności. Odnotujmy, że zachodzi twierdzenie: 2.8. Twierdzenie. Dziedzina Euklidesowa jest dziedzina rozk ladu. Dowód. Niech R be dzie dziedzina euklidesowa z waluacja v. Pokażemy przez indukcje wzgle dem wartości waluacji, że każdy element można przedstawić w postaci iloczynu elementów nierozk ladalnych.
5 Jeżeli v(x) = 1, to x jest elementem odwracalnym. Za lóżmy, że twierdzenie jest prawdziwe dla elementów o waluacji k. Niech v(x) = k + 1. Jeżeli x jest elementem nierozk ladalnym, to x = x jest rozk ladem. Jeżeli x nie jest nierozk ladalny, to x = yz, przy czym z i y nie sa odwracalne. Z w lasności waluacji wynika, że v(z) < v(x) i v(y) < v(x). Z za lożenia indukcyjnego, y i z moga być przedstawione w postaci iloczynu elementów nierozk ladalnych, a wie c x także. Należy teraz pokazać jednoznaczność rozk ladu. Wynika ona z faktu, że w dziedzinie euklidesowej, każdy element nierozk ladalny jest pierwszy. Niech bowiem x = up 1... p k = vq 1... q l. Nierozk ladalny, a wie c pierwszy, element p 1 q 1... q l, wie c p 1 q i dla pewnego 1 i l. Z nierozk ladalności elementu q i wynika, że p 1 i q i sa stowarzyszone. Możemy wie c obie strony podzielić przez p 1 i otrzymujemy dwa rozk lady o mniejszej liczbie czynników. Teza wynika przez indukcje ze wzgle du na liczbe czynników w rozk ladzie. W szkole podstawowej znajdowa lo sie najwie kszy wspólny dzielnik podzbioru A zbioru licz ca lkowitych w ten sposób, że należa lo roz lożyć wszystkie liczby ze zbioru A na czynniki pierwsze i najwie kszy wspólny dzielnik by l iloczynem tych, które wyste w każdej liczbie ze zbioru A. Dok ladnie to samo rozumowanie prowadzi do dowodu naste cego faktu Stwierdzenie. W każdej dziedzinie rozk ladu istnieje NWD(A), dla dowolnego niepustego podzbioru A R. Klasa pierścieni rozk ladu jest znacznie szersza niż klasa pierścieni Euklidesowych. Naste ce ważne twierdzenie jest tego ilustracja : Twierdzenie. Jeżeli R jest dziedzina rozk ladu, to pierścień wielomianów R[X] jest także dziedzina rozk ladu. 5 ZADANIA Z Pokazać, że w Z[ 5] nie istnieje NW D(4, ). Z Podać przyk lad elementu nierozk ladalnego w Z[ 5], który nie jest pierwszy. Z Znaleźć NW D(3456, 18564). Z W pierścieniu Z[ 2] znaleźć: (a) NW D(a + b 2, a b 2) (b) NW D( , 8 2 2). Z W pierścieniu Z[i] znaleźć NW D(2 + 11i, 1 + 3i) Z Niech K[[X]] oznacza pierścień szeregów formalnych nad cia lem K. pokazać, że jedynym elementem nierozk ladalnym jest X Z W Z 5 [X] 3X 3 + 4X = (X + 2) 2 (3X + 2) = (X + 2)(X + 4)(3X + 1). Dlaczego nie jest to sprzeczne z tym, że Z 5 [X] jest dziedzina rozk ladu? Pierścień Z[i]. Z Znaleźć wszystkie elementy odwracalne w Z[i]. Z Udowodnić, że dla liczby pierwszej p > 2 naste ce warunki sa równoważne: a) p jest elementem rozk ladalnym pierścienia Z[i]
6 6 b) p 1(mod 4) c) p = m 2 + n 2 dla pewnych m, n N Z Pokazać, że w rozk ladzie na czynniki pierwsze w Z liczby naturalnej be da cej suma kwadratów l = m 2 + n 2 każdy czynnik postaci 4k-1 wyste puje w pote dze parzystej. Znaleźć wszystkie liczby ca lkowite, które można przedstawić w postaci sumy kwadratów dwóch liczb ca lkowitych. Z Pokazać, że istnieje nieskończenie wiele liczb pierwszych postaci 4k + 1 oraz postaci 4k + 3. Pierścień Z[ 2]. Z Znaleźć wszystkie elementy odwracalne w Z[ 2]. Z Udowodnić, że z dok ladnościa do stowarzyszenia elementami pierwszymi w Z[ 2] sa : (a) 2 (b) liczby pierwsze ca lkowite postaci 8n ± 3 (c) dzielniki a + b 2, b 0 liczb pierwszych ca lkowitych postaci 8n ± 1. Z Udowodnić, że jeżeli K jest cia lem, to podpierścień K[X 2, X 5 ] pierścienia K[X] nie jest dziedzina rozk ladu. (jednoznaczność rozk ladu nie dziedziczy sie na podpierścienie).
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Bardziej szczegółowoWyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Bardziej szczegółowo13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
Bardziej szczegółowoWyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Bardziej szczegółowoWyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Bardziej szczegółowoUdowodnimy najpierw, że,,dla dostatecznie dużych x liczby a k x k i a 0 + a 1 x + + a k x k maja ten sam znak. a k
WIELOMIANY STOPNIA WYŻSZEGO NIŻ DWA Przypominamy, że wielomianem k tego stopnia nazywamy funkcje f postaci f(x) = a 0 + a 1 x + a 2 x 2 + + a k x k, gdzie wspó lczynnik a k jest liczba różna od 0. Piszemy
Bardziej szczegółowoPODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH
PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych
Bardziej szczegółowoWyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Bardziej szczegółowoFUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
Bardziej szczegółowoProstota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.
Prostota grup A n. Pokażemy, że grupy A n sa proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem. 1 2 0. Twierdzenie Schura Zassenhausa W tym rozdziale zajmiemy sie bardzo użytecznym twierdzeniem,
Bardziej szczegółowoWYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Bardziej szczegółowoZadania o pierścieniach
Zadania o pierścieniach 18.1.2015 Zadania zawieraja odsy lacze do podre czników [AMcD] M. F. Atiyah, I. G. MacDonald, Introduction To Commutative Algebra (wiele wydań) [BB] A. Biaynicki-Birula, Zarys algebry,
Bardziej szczegółowoWyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Bardziej szczegółowoW zbiorze liczb rzeczywistych wyróżnia sie pewne podzbiory. Zaczniemy od najważniejszego, tj. od zbioru liczb naturalnych.
LICZBY NATURALNE, CA LKOWITE, WYMIERNE W zbiorze liczb rzeczywistych wyróżnia sie pewne podzbiory. Zaczniemy od najważniejszego, tj. od zbioru liczb naturalnych. Definicja 9.1 (zbioru liczb naturalnych)
Bardziej szczegółowoCia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Bardziej szczegółowoDZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut
XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Bardziej szczegółowoMatematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Bardziej szczegółowoWyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Bardziej szczegółowoAlgebra i jej zastosowania konspekt wyk ladu, cz
Algebra i jej zastosowania konspekt wyk ladu, cz eść druga Anna Romanowska 22 października 2015 Pierścienie i cia la.1 Idea ly i pierścienie ilorazowe Definicja.11. Pierścień, w którym wszystkie idea ly
Bardziej szczegółowoTreść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Bardziej szczegółowoWykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Bardziej szczegółowoWyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Bardziej szczegółowo1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Bardziej szczegółowog liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoDzia lanie grupy na zbiorze. Twierdzenie Sylowa
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Niech G be dzie dowolna grupa, zaś X zbiorem. 1. Definicja. Dzia laniem grupy G na zbiorze X nazywamy funkcje µ: G X X, µ(g, x) = g x, spe lniaja ca dwa
Bardziej szczegółowo1. Zadania z Algebry I
1 Zadania z Algebry I Z 11 Znaleźć podgrupy grup Z 12, Z 8, D 6 i D 12 i narysować graf zawierań mie dzy nimi Z 12 Niech Q 8 := j, k GL(2, C), gdzie j, k sa macierzami: j = ( ) i 0 0 i k = ( 0 ) 1 1 0
Bardziej szczegółowoPierścienie grupowe wyk lad 3. lewych podmodu lów prostych. Ogólniej, aby roz lożyć dany pierścień na sume. prosta
Pierścienie rupowe wyk lad 3 Już wiemy, że alebre rupowa CG skończonej rupy G można roz lożyć na sume lewych podmodu lów prostych Oólniej, aby roz lożyć dany pierścień na sume prosta jeo dwóch podmodu
Bardziej szczegółowoWzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:
Bardziej szczegółowoPierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Bardziej szczegółowoGrupy i cia la, liczby zespolone
Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n
Bardziej szczegółowoWyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Bardziej szczegółowoUproszczony dowod twierdzenia Fredricksona-Maiorany
Uproszczony dowod twierdzenia Fredricksona-Maiorany W. Rytter Dla uproszczenia rozważamy tylko teksty binarne. S lowa Lyndona sa zwartymi reprezentacjami liniowymi s lów cyklicznych. Dla s lowa x niech
Bardziej szczegółowoIndukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Bardziej szczegółowoWykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Bardziej szczegółowoc a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.
y = ax 2 + bx + c WIELOMIANY KWADRATOWE Zajmiemy sie teraz wielomianami stopnia drugiego, zwanymi kwadratowymi. Symbol w be dzie w tym rozdziale oznaczać wielomian kwadratowy, tj. w(x) = ax 2 + bx + c
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
Bardziej szczegółowoAlgebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,
Bardziej szczegółowo(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Bardziej szczegółowo4. Dzia lanie grupy na zbiorze
17 4. Dzia lanie grupy na zbiorze Znaczna cze ść poznanych przez nas przyk ladów grup, to podgrupy grupy bijekcji jakiegoś zbioru. Cze sto taka podgrupa sk lada sie z bijekcji, które zachowuja dodatkowa
Bardziej szczegółowoWyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Bardziej szczegółowoSkończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
Bardziej szczegółowoMatematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Bardziej szczegółowoPodstawowe pojęcia teorii podzielności.
Podstawowe pojęcia teorii podzielności. Definicja Niech pr, `, q będzie pierścieniem 1 całkowitym. Mówimy, że element a dzieli b, a, b P R, (lub że a jest dzielnikiem b, lub że b jest wielokrotnością a)
Bardziej szczegółowoCiała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Bardziej szczegółowo5. Obliczanie pochodnych funkcji jednej zmiennej
Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane
Bardziej szczegółowoSumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
Bardziej szczegółowoWyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Bardziej szczegółowoMaciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca
Bardziej szczegółowoAlgebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Bardziej szczegółowoAlgebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia A Pilitowska i A Romanowska 24 kwietnia 2006 1 Grupy i quasigrupy 1 Pokazać, że w każdej grupie (G,, 1, 1): (a) jeśli xx = x, to x = 1, (b) (xy) 1 = y 1 x 1, (c) zachodzi
Bardziej szczegółowoAlgebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 14 stycznia 2013 1 Kraty 1. Pokazać, że każda klasa kongruencji kraty (K, +, ) jest podkrata kraty (K, +, ). 2. Znaleźć wszystkie kongruencje kraty 2 3, gdzie 2 jest
Bardziej szczegółowoWyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Bardziej szczegółowoAlgebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Bardziej szczegółowoRozdzia l 2. Najważniejsze typy algebr stosowane w logice
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr
Bardziej szczegółowoRozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Bardziej szczegółowoKongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Bardziej szczegółowoWyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Bardziej szczegółowo1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Bardziej szczegółowoWyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Bardziej szczegółowoNiech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Bardziej szczegółowoP (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
Bardziej szczegółowoLXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
Bardziej szczegółowoAlgebra i jej zastosowania - konspekt wykładu
Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2016/2017 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 2 13 Ciało ułamków
Bardziej szczegółowoSzeregi liczbowe wste
3 grudnia 2007 orawi lem dowód twierdzenia o rzybliżeniach dziesie tnych Zajmiemy sie teraz cia gami nieskończonym, ale zaisywanymi w ostaci sum. Definicja 2. (szeregu) Niech (a n ) be dzie dowolnym cia
Bardziej szczegółowo0.1 Sposȯb rozk ladu liczb na czynniki pierwsze
1 Temat 5: Liczby pierwsze Zacznijmy od definicji liczb pierwszych Definition 0.1 Liczbȩ naturaln a p > 1 nazywamy liczb a pierwsz a, jeżeli ma dok ladnie dwa dzielniki, to jest liczbȩ 1 i sam a siebie
Bardziej szczegółowoTeoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych
Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie
Bardziej szczegółowoMaria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Bardziej szczegółowoLX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Bardziej szczegółowoTwierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Bardziej szczegółowoKongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Bardziej szczegółowoLOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Bardziej szczegółowoAlgebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Bardziej szczegółowoInformacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Bardziej szczegółowoLiczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza. Oś liczbowa. Liczba 1, to nie jest liczba pierwsza
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 3 Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza 2 1 0 1 2 3 x Oś liczbowa. Liczba 1, to nie jest liczba pierwsza MATEMATYKA
Bardziej szczegółowo1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Bardziej szczegółowoROZDZIA l 13. Zbiór Cantora
ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go
Bardziej szczegółowoi=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
Bardziej szczegółowoWersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.
1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja
Bardziej szczegółowoAlgebra i jej zastosowania - konspekt wykładu
Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2012/2013 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Ciało ułamków
Bardziej szczegółowoLXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
Bardziej szczegółowoRachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Bardziej szczegółowoAlgebra i jej zastosowania - konspekt wykładu
Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa
Bardziej szczegółowoTeoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Bardziej szczegółowoAnaliza 1, cze ść druga
Analiza 1, cze ść druga Granica górna cia gu a n ) nazywamy res górny zbioru z lożonego z granic wszystich tych podcia gów cia gu a n ), tóre maja granice sończone lub nie). Oznaczamy ja przez lim sup
Bardziej szczegółowoPierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja
Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk
Bardziej szczegółowoZadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem
Bardziej szczegółowoWersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?
1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3
Bardziej szczegółowoWyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Bardziej szczegółowoLiczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Bardziej szczegółowoPodstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Bardziej szczegółowoPisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8
EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja
Bardziej szczegółowoGRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB
U N I W E R S Y T E T S Z C Z E C I Ń S K I GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB SZCZECIN 1999 SPIS TREŚCI Przedmowa...................................................5
Bardziej szczegółowoMATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Bardziej szczegółowo