ANALIZA SZEREGÓW CZASOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA SZEREGÓW CZASOWYCH"

Transkrypt

1 ANALIZA SZEREGÓW CZASOWYCH Cze śći Szeregiem czasowym azywamy ciag {y t } wyików obserwacji uporzadkowa- ych w czasie, przy czym symbol t umery kolejych jedostek czasu, atomiast y t ozacza wielkość badaego zjawiska w okresie (lub momecie) t Szereg czasowy o skończoej liczbie wyrazów przedstawiamy z regu ly w postaci tabelaryczej: Okresy lub momety czasu t 1 2 y t y 1 y 2 y Szereg czasowy mometów, to szereg zawierajacy iformacje o poziomach badaego zjawiska w określoych mometach pewego przedzia lu czasowego Z kolei szereg czasowy okresów zawiera iformacje o rozmairach zjawiska w ciagu kolejych okresów daego przedzia lu czasowego Przyk lad 1 Szereg czasowy mometów: data 31 XII 31 XII 31 XII 31 XII 31 XII 31 XII 31 XII kaledarzowa sta ludości Polski w tys 38254, , , , , , , 5 Źród lo: Rocziki Demograficze Przyk lad 2 Szereg czasowy okresów: lata urodzeia żywe w Polsce w tys 378, 3 368, 2 353, 8 351, 1 356, 1 364, 4 374, 2 Źród lo: Rocziki Demograficze 1

2 Aaliza szeregów czasowych sprowadza siedoast epuj acych trzech zagadień: 1 aaliza opisowa szeregu czasowego (tj obliczaie średiej arytmetyczej lub chroologiczej, wariacji, odchyleia stadardowego), 2 porówaie poziomów zjawiska w czasie (tj aaliza dyamiki zjawisk z wykorzystaiem miar dyamiki), 3 dekompozycja szeregu czasowego (tj wyodr ebiaie tedecji rozwojowej, wahań okresowych i wahań przypadkowych) Ad1 Do podstawowych miar opisu szeregów czasowych zaliczamy: -średia arytmetycza(miar e tedecji cetralej dla szeregów czasowych okresów) ȳ = y 1 + y y = 1 y i, -średia chroologicza(miar e tedecji cetralej dla szeregów czasowych mometów) i=1 y 1+y y2+y3 2 + y 1+y 2 ȳ = 1 = 2 y 1 + y y -wariacje i odchyleie stadardowe s 2 = 1 (y i ȳ) 2, s = 1 i=1, = (y i ȳ) 2 i=1 Ad2 Aaliz e dyamiki zjawisk przeprowadzamy z wykorzystaiem miar dyamiki, do których zaliczamy: - przyrosty (absolute i wzgl ede), - ideksy dyamiki (idywiduale i zespo lowe) 2

3 PRZYROSTY Podstawowym sposobem porówywaia zmia zjawiska w czasie jest aaliza przyrostów absolutych i wzgledych Przyrost absoluty y t obliczamy jako różice pomi edzy poziomem zjawiska zaobserwowaym w czasie t a poziomem zjawiska zaobserwowaego w czasie t, przyj etym za podstaw e, czyli y t = y t y t, t =1, 2,, Przyrosty absolute iformuja, o ile wzrós l lub zmala l poziom badaego zjawiska zaobserwoway w okresie (lub momecie) t wporówaiu z jego poziomem w okresie (momecie) bazowym Przyrost wzgledy obliczamy jako iloraz przyrostu absolutego y t do poziomu zjawiska zaobserwowaego w czasie bazowym Iloraz te mam postać: y t y t, t =1, 2,, y t Jeśli przyrost wzgledy pomożymy przez 100%, wówczas otrzymamy procetowy przyrost wzgledy, który iformuje, o ile procet jest wyższy lub iższy poziom zjawiska zaobserwoway w okresie (momecie) t wporówaiu do jego poziomu w okresie (momecie) bazowym t Przyrostwzgledy określamy rówież miaem wskaźika tempa przyrostu (lub spadku) Przyrosty absolute lub wzglede dla kokretego szeregu czasowego, zestawioe w ciag, daja tzw szereg czasowy przyrostów Przyk lad 3 Na podstawie daych z przyk ladu 2 obliczymy przyrosty absolute i wzglede liczby urodzeń w Polse w latach , przyjmujac za podstaweporówań kolejo rok 2000 i rok 2003: okresy czasu (lata) przyrosty absolute w tys (rok bazowy ) 0 10, 1 24, 5 27, 2 22, 2 13, 9 4, 1 przyrosty wzglede w % (rok bazowy ) 0 2, 7 6, 5 7, 2 5, 9 3, 7 1, 1 przyrosty absolute w tys (rok bazowy ) 27, 2 17, 1 2, , 3 23, 1 przyrosty wzglede w % (rok bazowy ) 7, 8 4, 9 0, 8 0 1, 4 3, 8 6, 6 Źród lo: Obliczeia ia podstawe daych z przyk ladu 2 Zitepretujemy przyrosty absolute w przypadku, gdy podstawaporówań jest rok 2000 Zauważymy, że mamy tu do czyieia z wartościami ujemymi, co ozacza, że w latach liczby urodzeń by ly iższe w porówaiu do 3

4 roku 2000, przy czym p w roku 2001 wielkość taby la iższa o 10,1 tys, podczas gdy w roku 2003 aż o 27,2 tys Przyrosty wzglede w tym przypadku przyjmujarówież wartości ujeme Na przyk lad przyrost wzgledy dla roku 2003 ozacza, że w tym roku liczba urodzeń spad la o7, 2% w porówaiu do poziomu z roku 2000 INDEKSY DYNAMIKI Ideksem dyamiki azywamy iloraz wielkości badaego zjawiska w dwch porówywaych okresach (mometach) Ideksy dyamiki dzielimy a: - ideksy idywiduale ozaczae litera i (iaczej zwae ideksami czastko- wymi), - ideksy zespo lowe ozaczae litera I (iaczej zwae ideksami agregatowymi) Te podzia l ideksów dyamiki odpowiada aalogiczemu podzia lowi zjawisk a: - idywiduale, tj zjawiska jedorode, które mogabyć liczbowo wyrażoe w jedakowych jedostkach fizyczych (p w kilogramach, sztukach, metrach itp), - zespo lowe, tj zjawiska iejedorode, wyrażoych w różych jedostkach miary Ideksy idywiduale Idywidualym ideksem dyamiki azywamy iloraz poziomów badaego zjawiska y t1 oraz y t0 zaotowaych w dwóch okresach (lub mometach) t 1 oraz t 0, czyli i t1 = y t 1, t 0 y t0 gdzie y t1 ozacza poziom zjawiska w okresie (lub momecie) sprawozdawczym t 1, atomiast y t0 ozacza poziom zjawiska w okresie (lub momecie) t 0 uzaym za podstaweporówań W skrócie ideks te bedziemy zapisywać wzorem i 1 0 = y 1 y 0 Ideksy idywiduale dzielimy a: jedopodstawowe, dostarczajace ocey dyamiki zjawiska w kolejych okresach (mometach) czasu w porówaiu do sta lego okresu (mometu) przyjetego za podstaweporówań, 4

5 lańcuchowe, dostarczajace ocey dyamiki zjawisk w kolejych okresach (mometach) czasu w porówaiu do okresów (mometów) szeregu bezpośredio poprzedzajacych Jeśli ideksy idywiduale (jedopodstawowe lub lańcuchowe) pomożymy przez 100%, wówczas otrzymamy ideksy w wyrażeiu procetowym Idywiduale ideksy dyamiki (jedopodstawowe lub lańcuchowe) dla kokretego szeregu czasowego, zestawioe w ciag, daja tzw szeregi czasowe ideksów W przypadku szeregów zawierajacych lańcuchowe ideksy dyamiki, tj ciag ideksów postaci i t1 t 0, i t2 t 1,,i t t 1,moża wyzaczaćichśrediawartość, wykorzystujac formu l e średiej geometryczej G = i t1 t 0 i t2 t 1 i t t 1 Zauważymy, że stopień pierwiastka w podaej formule rówy jest liczbie sk ladików (tj ideksów lańcuchowych) wystepuj acych pod pierwiastkiem Powyższaformu l emoża uprościć, korzystajac z faktu, że każdy z ideksów lańcuchowych (o ogólej postaci i tj t j 1 )moża zapisaćzapomocaast epuj acego ilorazu i tj t j 1 = y t j y tj 1 Mamy zatem G = yt1 y t0 yt2 y t1 y t y t 1 = yt Średia geometrycza z ideksów lańcuchowych mierzy średie tempo zmia (tj tempo wzrostu lub spadku) wielkości zjawiska z okresu a okres w badaym przedziale czasowym Jest zatem wskazae, aby tego rodzaju średia wyzaczać w odiesieiu do takiego przedzia lu czasowego, w którym obserwuje sie jedokierukowy charakter zmia badaego zjawiska (tj albo wzrost, albo spadek) Przyk lad 4 Na podstawie daych z przyk ladu 2 obliczymy ideksy lańcuchowe oraz ideksy jedopodstawowe dla liczby urodzeń w Polse w latach , przyjmujac w tym drugim przypadku za podstaweporówań rok 2000 y t0 lata ideksy lańcuchowe w % (rok poprzedi=100) 97, 3 96, 1 99, 2 101, 4 102, 3 102, 7 ideksy jedopodstawowe w % (rok 2000=100) , 3 93, 5 92, 8 94, 1 96, 3 98, 9 Źród lo: Obliczeia ia podstawe daych z przyk ladu 2 5

6 Ziterpetujemy wybrae dwa ideksy Ideks jedopodstawowy dla roku 2006 iformuje, że w tym roku liczba urodzeń by la o 1, 1% iższa w porówaiu do liczby urodzeń w roku 2000 Z kolei ideks lańcuchowy dla tego samego roku iformuje, że liczba urodzeń by la w tym roku o 2, 7% wyższa w porówaiu do roku poprzediego Obliczymy jeszcze średie tempo wzrostu liczby urodzeń w latach , wykorzystujac formu l eśrediej geometryczej z ideksów lańcuchowych Mamy G = 3 101, 4 102, 3 102, 7 102, 15%, co ozacza, że średie, rocze tempo wzrostu liczby urodzeń w latach wyosi lo ok 2, 15% Ideksy zespo lowe Tego rodzaju ideksy stosujemy w odiesieiu do zjawisk z lożoych, tj zjawisk bed acychzespo lami (agregatami) zjawisk iejedorodych, tj iesumowalych w jedostkach fizyczych Przyk ladem iejedorodych agregatów moga być materia ly budowlae czy artyku ly żywościowe, w sk lad których wchodza towary i produkty wyrażoe w różych jedostkach fizyczych (p w toach, sztukach, kilogramach, litrach itp) Sk ladiki tego rodzaju agregatów ie sa wiec bezpośredio sumowale Problem iesumowalości zjawisk z lożoych rozwiazuje sieajcz eściej poprzez wyrażeie wszystkich sk ladików daego agregatu w pewych wspólych jedostkach przeliczeiowych, którymi saajcz eściej jedostki pieieże Przeliczeie agregatu a jedostki pieieże staowi pukt wyjścia do wyzaczaia tzw agregatowych ideksów dyamiki (w tym zespo lowych ideksów wartości, ilości i ce, omówioych poiżej) Agregatowy ideks wartości Niech j =1, 2,,J bed a umerami produktów, atomiast q 1t,q 2t,,q Jt iech bed a ilościami tych produktów (masa fizycza), wchodzacych w sk lad pewego wiekszego agregatu produktów w okresie (momecie) t Podobie, iech p 1t,p 2t,,p Jt ozaczaja cey jedostkowe poszczególych produktów w tym agregacie w okresie (momecie) t Jeśli ilości q jt wyrażoe sa wróżych jedostkach fizyczych, to ie moża ich do siebie dodawać, podobie jak ie moża dodawać do siebie ich ce W celu przeprowadzeia aalizy dyamiki w odiesieiu do tego rodzaju agregatu produktów, koiecze jest sprowadzeie go do sumowalości Dokoamy tego poprzez przedstawieie daego agregatu w ujeciu wartościowym 6

7 Wartość j-tego sk ladika (produktu) w badaym agregacie obliczymy, możac jego ilość q jt przez cee p jt w daym okresie (momecie) Stad l acza wartość w t ca lego agregatu jest rówa sumie w t = J q jt p jt j=1 Aby porówaćwartości badaego agregatu w dwóch różych okresach (mometach) czasu, ozaczoych dalej umowie przez t 1 i t 0, wystarczy podzielić przez siebie wartość agregatu w okresie (momecie) t 1, zwaym okresem lub mometem badaym, przez jego wartość w okresie (momecie) t 0,zwaymokresem lub mometem podstawowym W te sposób otrzymujemy agregatowy ideks wartości I w = w J t 1 j=1 = q p jt jt 1 1 J w t0 j=1 q p jt0 jt0 Dla uproszczeia zapisu ideks te zapisywaćbedziemy dalej wzorem skrócoym q1 p I w = 1 q0 p 0 Zauważymy, że agregatowy ideks wartości jest wypadkowa dyamiki ilości i ce produktów wchodzacych w sk lad badaego agregatu produktów Na jego podstawie ie moża wiec oddzielie oceić wp lywu zmia ilości lub wp lywu zmia ce a dyamikewartości tego agregatu Do tego celu s luża tzw agregatowe ideksy ilości i agregatowe ideksy ce Agregatowe ideksy ilości i ce Podstawa budowy tych ideksów jest tzw metoda stadaryzacji ideksowej polegajaca a tym, że w agregatowym ideksie wartości I w, przedstawioym powyżej jede ze sk ladików sumy wystepuj acej w licziku i miaowiku wzoru (a wiec cey lub ilości produktów) sa ustalae a sta lym poziomie w obu porówywaych okresach (mometach), tz przyjmuje siealbosta le cey, albo sta le ilości dla każdego z produktów w obu porówywaych okresach Dzieki temu możliwe jest określeie wp lywu drugiego z tych sk ladików a zmiay w wartości badaego agregatu Jeśli czyikiem ustaloym a sta lym poziomie bed a cey produktów, to w efekcie otrzymamy ideks iformujacy o tym, jaki wp lyw a dyamikewartości badaego agregatu mia ly zmiay w ilościach produktów zawartych w tym agregacie Z tego powodu ideks te azywamy agregatowym ideksem ilości Istiejadwieformu ly defiiujace agregatowy ideks ilości: Paaschego i Laspeyresa W pierwszej z ich przyjmuje siesta le cey a poziomie z okresu badaego, a w drugiej a poziomie z okresu podstawowego 7

8 Formu la Paaschego: P I q = J j=1 q jt 1 p jt 1 J j=1 q jt 0 p jt1, wskrócie P I q = q1 p 1 q0 p 1, Formu la Laspeyresa: LI q = J j=1 q p jt jt q1 1 0 p J j=1 q p, wskrócie LI q = 0 q0 p jt0 jt0 0 W podoby sposób kostruujemy agregatowe ideksy ce, tz przyjmujemy, że ilości produktów w daym agregacie saasta lym poziomie w obu porówywaych okresach (mometach) Formu la Paaschego: P I p = J j=1 q jt 1 p jt 1 J j=1 q jt 1 p jt0, wskrócie P I p = q1 p 1 q1 p 0, Formu la Laspeyresa: LI p = J j=1 q p jt jt q0 0 1 p J j=1 q p, wskrócie LI p = 1 q0 p jt0 jt0 0 Ze wzgledu a fakt, że w ideksach Paaschego i Laspeyresa ustala sie cey badź ilości a sta lych poziomach, ale z różych okresów (mometów), ideksy te a ogó l różiasi e, czyli LI p P I p, LI q P I q Miedzy agregatowymi ideksami wartości, ilości i ce zachodzi jedak zwiazek określay miaem rówości ideksowej I w = L I p P I q = P I p LI q Ze wzgledu a przyjmowae za lożeie o sta lości ce lub ilości w daym agregacie produktów, iterpretacji tych ideksów dokouje sieajcz eściej z użyciem trybu warukowego Ideksy ilości (ideksy ce) wg formu ly Paaschego iformuja, o ile zmiei laby sie, tj wzros la lub spad la, wartośćca lego agregatu produktówwporówywaych okresach, gdyby cey (ilości) produktów by ly sta le a poziomie z okresu badaego Ideksy ilości (ideksy ce) wg formu ly Laspeyresa iformuja, o ile zmiei laby sie, tj wzros la lub spad la, wartośćca lego agregatu produktówwporówywaych okresach, gdyby cey (ilości) produktów by ly sta le a poziomie z okresu podstawowego 8

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

Analiza szeregów czasowych

Analiza szeregów czasowych Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji

Bardziej szczegółowo

ANALIZA KORELACJI IREGRESJILINIOWEJ

ANALIZA KORELACJI IREGRESJILINIOWEJ ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36

Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36 Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

Statystyka Wzory I. Analiza struktury

Statystyka Wzory I. Analiza struktury Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41

Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41 Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś 1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 Aaliza Fukcjoala WPPT IIIr. semestr leti 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 NiechX ozaczaprzestrzeńbaacha,ax jejdual a(czyliprzestrzeńfukcjoa lów ograiczoych

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects ISSN 1733-8670 ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 2 0 0 6 Adrzej Burzyński Aaliza dokładości wskazań obiektów

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47

Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47 Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Wybrane litery alfabetu greckiego

Wybrane litery alfabetu greckiego Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

Słowniczek Hipoteza statystyczna Hipoteza parametryczna Hipoteza nieparametryczna Hipoteza zerowa Hipoteza alternatywna Błąd pierwszego rodzaju

Słowniczek Hipoteza statystyczna Hipoteza parametryczna Hipoteza nieparametryczna Hipoteza zerowa Hipoteza alternatywna Błąd pierwszego rodzaju Słowiczek Hipoteza statystycza jakiekolwiek przypuszczeie dotyczące rozkładu populacji geeralej Hipoteza parametrycza hipoteza statystycza precyzująca wartość parametru w rozkładzie populacji geeralej

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018

Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018 STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

1. Referencyjne wartości sprawności dla wytwarzania rozdzielonego energii elektrycznej

1. Referencyjne wartości sprawności dla wytwarzania rozdzielonego energii elektrycznej Załączik r 2 REFERENCYJNE WARTOŚCI SPRAWNOŚCI DLA WYTWARZANIA ROZDZIELONEGO ENERGII ELEKTRYCZNEJ I CIEPŁA UŻYTKOWEGO. Referecyje wartości sprawości dla wytwarzaia rozdzieloego eergii elektryczej.. Referecyje

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

KURS MATURA PODSTAWOWA

KURS MATURA PODSTAWOWA KURS MATURA PODSTAWOWA LEKCJA 5 Ciągi ZADANIE DOMOWE www.etrapez.pl Stroa 1 Część 1: TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie 1 Piąty wyraz ciągu liczbowego o wzorze a a) 5 b)

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo