Wykład 5. Zderzenia w mechanice
|
|
- Liliana Zakrzewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wykład 5 Zderzena w echance Zderzene nazyway zjawsko, wskutek którego zachodzą raptowne zany ruchu dwóch albo klku zderzających sę cał. Warto podkreślć, że przy zderzenu sły, które dzałają ędzy cząstka występują przez bardzo krótk czas, tak że ożey zawsze powedzeć, że to było do zderzena, a to po zderzenu. Sły krótkotrwałe pulsowe, które dzałają przy zderzenu nazyway sła zderzenowy. Popęd sły Poneważ sły zderzenowe dzałają przez bardzo krótk czas t, to korzystając z drugego prawa Newtona ożey napsać, że zana pędu p cała podczas dzałana sł zderzenowych F wynos p p f p F t. V. Tu wskaźnk f odnoszą sę do czasu przed po zderzenu. Welkość F t popędu sły. A zate, zana pędu cała pod wpływe zderzenowej sły F popędow sły. nos nazwę jest równa Rozważy teraz zderzene poędzy dwea cząstka o asach rys.v. RysV. Na podstawe wzoru V. ożey zapsać, że zany pędów cząstek pod wpływe zderzena wynoszą p F t, V. p F t, V.3 gdze F F są, odpowedno sły zderzenowe, dzałające na perwsze druge cało. Zgodne z trzecą zasadą Newtona sły zderzenowe F F uszą być równe, względe wartośc bezwzględnej być przecwne do sebe skerowane F F. V.4 Borąc pod uwagę wzór V.4 otrzyujey, że całkowta zana pędu zderzena równa sę zeru P układu w wynku 45
2 P p p 0. V.5 Wzór V.5 wyraża, prawo zachowana całkowtego pędu cząstek podczas zderzena. Należy podkreślć, że poneważ sły zderzenowe są sła wewnętrzny, prawo zachowana pędu cząstek podczas zderzena, wynka bezpośredno z prawa zachowana pędu zolowanego układu cząstek patrz Wykład 3 wzór III.9. Ze wzoru V. wynka, że krótszy jest czas zderzena, ty wększa jest zana pędu cząstk. Rozważy przykład lustrujący to zdane. Zadane. Płka ważąca 0, kg z prędkoścą 30 s uderza prostopadle w ścanę, po czy odbja sę od nej z prędkoścą ne zenoną co do wartośc. Jaka sła zderzenowa dzała na płkę, jeżel czas zderzena wynos t 0, 0 s? Rozwązane: Wyberzy oś Ox układu współrzędnych wzdłuż prędkośc płk po zderzenu. Wtedy, zgodne z treścą zadana, ożey zapsać Uwzględnając V.6, ze wzoru V. otrzyujey fx x. V.6 p x F t. V.7 fx x x Skąd ay 0,00kG 30 s F x 00kG t 9,8 s 0,0s. V.8 Dla krótszych czasów średna sła będze jeszcze wększa. Na przykład, jeżel t 0, 00 s, to F x 000kG. Zderzena doskonale nesprężyste Zderzene dwóch cał nazyway zderzene doskonale całkowce nesprężysty, gdy po zderzenu oba cała łączą sę poruszają sę dalej jako całość. Przykłade takego zderzena jest uderzene kul w zaweszony worek z paske. Procesy fzyczne, które zachodzą podczas tego zderzena są bardzo złożone. Jednak ne rozważając tych zjawsk, ożey znaleźć prędkość połączonego cała, korzystając tylko z zasady zachowana pędu. Rozważy zderzena dwóch cał punktów ateralnych o asach, poruszających sę ruche postępowy z prędkośca. Na dwa zderzające sę cała ne dzała żadna sła zewnętrzna, a zate, zgodne z zasadą zachowana pędu dla 46
3 odosobnonego układu, wypadkowy pęd dwóch cał do po zderzenu us być ten sa. Oznaczając prędkość połączonego cała przez V zapszy prawo zachowana pędu V, skąd dla prędkośc V otrzyujey V. V.9 Znajdzey teraz energę knetyczną dwóch cał do po zderzenu. Do zderzena energa knetyczna dwóch cał była równa: T do. V.0 Po zderzenu energa knetyczna układu jest równa: V T po. V. Po podstawenu V.9 do V., znajdujey V T po. V. Wydzely w ty wzorze energą knetyczną do T, dodając odejując człon : T po ] {[ } 47
4 T do T µ. V.3 do Tu jest asą zredukowaną. µ V.4 Ze wzoru V.3 wnoskujey, że przy zderzenu nesprężysty energa knetyczna układu dwóch zderzających sę cał aleje: A T po Tdo µ. V.5 Ze wzoru V.5 wynka, że podczas zderzena nesprężystego całkowta energa układu ne zachowuje sę. Zana energ knetycznej jest równa, jak wey, pracy, którą wykonują sły zderzenowe występujące przy zderzenu. A zate znejszene całkowtej energ knetycznej układu oże być wykorzystane wykorzystuje sę do wykonana pracy, na przykład kuca albo wbjana gwoźdz. Z równana V.5 wdzy, że najwększa zana energ knetycznej powstaje gdy wektory są skerowane w strony przecwne. Zadane. Rozważy zderzene dwóch saochodów o asach w przypadku a saochody przed zderzene ały równe, co do wartośc bezwzględnej, prędkośc b prędkość jednego saochodu wynos a drug saochód jest neruchoy 0. Rozwązane: a Zgodne z V.0 całkowta energa knetyczna dwóch saochodów do zderzena wynos T do. V.6 Po zderzenu, zgodne z V.5 praca sł zderzenowych jest równa tu µ A T po T do µ. V.7 Prędkość saochodów po zderzenu, zgodne z V.9, wynos 48
5 V 0. V.8 A zate po zderzenu dwa saochody zatrzyują sę, a cała energa knetyczna saochodów dze na znszczene saochodów. b Zgodne z V.0, V.5 V.9 ay T do A. V.9 4 Tpo Tdo µ. V.0 V. V. Ze wzoru V. wynka, że po zderzenu dwa saochody poruszają sę jako całość z prędkoścą. Z porównana wzorów V.0 V.7 wdzy, że w ty przypadku tylko połowa energ knetycznej saochodów dze na ch znszczene. Zderzena doskonale sprężyste Zderzene dwóch cał nazyway zderzene doskonale sprężysty, jeżel podczas tego zderzena energa całkowta ne ulega zane. To oznacza, że przy zderzenu wewnętrzna energa cał ne zena sę. Rozważy zderzene dwóch cał o asach, poruszających sę ruche postępowy z prędkośca. Oznaczając przez prędkośc cząstek po zderzenu, zapszy prawo zachowana pędu prawo zachowana energ dla takego układu:, V.a. V.b Układ równań V. to układ czterech równań: wektorowe równane V.a jest układe trzech równań dla składowych wektorów plus jedno równane V.b. Natoast newadoych w ty układze równań ay sześć: po trzy składowe dla wektorów. A zate, poneważ, jak to zwykle bywa, ne znay rzeczywstych sł zderzenowych, ne ożey rozwązać, w ogólny przypadku, zagadnena sprężystego zderzena dwóch cał. Istneje jednak przypadek, dla którego ożey znaleźć rozwązane, korzystając tylko z 49
6 równań V.. Jest to przypadek, tak zwanego zderzena czołowego, czyl zderzena, dla którego pędy zderzających sę cał znajdują sę na ln zderzena, czyl na ln łączącej dwa zderzające sę cała. Rozważy ten przypadek. Wyberzy oś Ox wzdłuż ln łączącej środk as cał oznaczy x, x, x, x. Korzystając z tych oznaczeń przepszy wzory V.a V.b w postac:, V.3. V.4 Ze wzoru V.4, borąc pod uwagę, że po uwzględnenu wzoru V.3 znajdujey. V.5 Równana V.4 V.3 tworzą układ dwóch równań algebracznych względe dwóch ne wadoych prędkośc :. V.6a. V.6b Mnożąc V.6a przez suując otrzyane równane z równane V.6b znajdujey. V.7 Skąd. V.8 W podobny sposób, nożąc V.6a przez odejując otrzyane równane od równana V.6b znajdujey. V.9 Skąd. V.30 50
7 Welkość C V.3 określa prędkość środka as dwóch zderzających sę cał w wybrany laboratoryjny układze odnesena. W przypadku ruchu zolowanego ta prędkość, zgodne z zasadą zachowana całkowtego pędu zolowanego układu, jest welkoścą stałą. A zate, z uwzględnene V.3 wzory V.8 V.30 ożey zapsać w postac. V.3 C. V.33 C Jeżel, ze wzoru V.3 ay A zate ze wzorów V.3 V.33 otrzyujey: C. V.34, V.35, czyl dwa cała o jednakowej ase po zderzenu sprężysty zaenają sę prędkośca. Czasa dogodne jest rozważać zderzena cząstek w układze odnesena, w który środek as spoczywa 0. Tak układ odnesena nazyway układe środka asy. W C układze środka asy, zgodne ze wzora V.3 V.33 ay,. V.36 A zate w układze środka as po zderzenu sprężysty prędkośc cząstek zenają swoje kerunk. Wartośc bezwzględne prędkośc cząstek pozostają take sae. Zadane 3. Cząstka o ase zderza sę z cząstką o tej saej ase, która początkowo spoczywa. Prędkość ruchoej cząstk do zderzena była równa Po zderzenu perwsza cząstka porusza sę pod kąte θ do perwotnego kerunku ruchu rys.v.. Zakładając, że zderzene cząstek jest doskonale sprężyste, znajdzey prędkość każdej cząstk po zderzenu kąt, jak tworzy odrzucona cząstka z kerunke perwotny cząsteczk padającej. 5
8 Rozwązane. Stosując zasadę zachowana pędu otrzyujey dwa równana skalarne dla składowych x składowych y pędów: Rys.V. θ, V.37a f cosθ f cos 0 θ. V.37b f snθ f sn Z zasady zachowana energ ożey zapsać trzece równane f f. V.37c May trzy równana względe trzech newadoych:, f f θ. Przepszy równana V.37 w postac f cosθ f cos θ, V.38 snθ snθ f f, V.39. V.40 f f Podnosząc do kwadratu równane V.38 równane V.39 otrzyujey f cosθ f cos θ f cos θ. V.4 sn θ sn θ f f, V.4 5
9 Suując strona równana V.4 V.4 przyponając, że cos θ sn θ, znajdujey. V.43 f f cosθ f Borąc pod uwagę wzór V.40, znajdujey f f f cosθ f. V.44 Skąd ay cosθ f. V.45 Dalej z równana V.40 otrzyujey f f cos. V.46 θ Skąd wynka, że f snθ. V.47 Ostateczne z równana V.39 ay f snθ snθ. V.48 f Po uwzględnenu V.45 V.47 znajdujey snθ f snθ cos f θ. V.49 Lteratura do Wykładu 5.. Robert Resnk, Davd Hallday: Fzyka, Wydawnctwo PWN, Warszawa, 994, str Sz. Szczenowsk, Fzyka dośwadczalna, t., PWN, Warszawa 980, str Zadana do Wykładu 5. Płka o ase 00 g porusza sę z prędkoścą 50 s, w chwl, gdy uderza w ną kj, który zena kerunek jej ruchu na przecwny nadaje jej prędkość 50 s. Jaką przecętną słę wywarł na płkę kj, jeżel oddzałuje na ną 5 s. Odpowedź: 4000 N.. Płka o ase 500 g spadając ponowo na podłogę a chwl zderzena prędkość 0 s. Płka odbja sę od podłog z prędkoścą początkową 0 s. a Oblczyć popęd 53
10 dzałający na płkę w czase kontaktu z podłogą. b Jaką słą dzała płka na podłogę, jeżel kontakt trwał 0,0 s? Odpowedź: a 5 N s; b 750 N. 3. Dwa statk kosczne rozdzelły sę wskutek wybuchu ładunku ueszczonego ędzy n. Jeżel asy statków wynoszą odpowedno 000 kg 000 kg, a popęd sły wybuchu 000 N s, to jaka jest względna prędkość oddalana sę dwóch statków? Odpowedź: 0,75 s. 4. Rozważyć zderzene nesprężyste dwóch cał o asach > > w przypadku, gdy cała przed zderzene ały równe, co do wartośc bezwzględnej, prędkośc. 5. Rozważyć zderzene nesprężyste dwóch cał o asach > > w przypadku, gdy prędkość jednego cała wynos a druge cało jest neruchoe Dwe cząstk ateralne, jedna o ase cztery razy wększej od drugej, połączone są ścśnętą sprężyną. Energa zagazynowana w sprężyne wynos 5 J. Ile energ knetycznej a każda cząstka po puszczenu sprężyny? Odpowedź: 0 J cząstka lżejsza, 5 J cząstka cęższa. 7. Z atoe wodoru, znajdujący sę w spoczynku, elektron zderza sę czołowo w sposób sprężysty. Ruch przed po zderzenu odbywa sę wzdłuż tej saej prostej. Jaką część energ knetycznej elektronu otrzya wskutek zderzena ato wodoru? Masa atou wodoru jest 840 razy wększa od asy elektronu. Odpowedź: 0,% 8. Na sank o ase 6 kg, poruszające sę po lodze z prędkoścą 0 s, rzucono ponowo z góry paczkę o ase 4 kg. Opsać ruch sanek po ch obcążenu. Odpowedź: prędkość sanek znejszy sę do 6 s. 9. Pokazać, że gdy zderzene jest sprężyste oraz jednowyarowe, prędkość środka asy dwóch cząstek o ase poruszającej sę z prędkoścą poruszającej sę z prędkoścą wynos oraz o ase. śr. 0. Cało o ase zderza sę sprężyśce z nny całe będący w spoczynku, po zderzenu cało to porusza sę dalej w ty say kerunku, lecz z prędkoścą o α nejszą od prędkośc początkowej. Jaka jest asa cała pozostającego początkowo w spoczynku? Odpowedź: α α. 54
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Blok 7: Zasada zachowania energii mechanicznej. Zderzenia
Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
środek masy 5. ŚRODEK MASY UKŁADU = i= + m2
5. ŚRODEK MASY UKŁADU Środek asy układu składającego sę z cząstek zajuje określone połoŝene, które określay za poocą wektora R : R r (46) Przykładowo, dla układu złoŝonego z dwóch cząstek: R r + r + (47)
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]
Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv
SPRAWDZANIE PRAWA MALUSA
INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
3. Dynamika ruchu postępowego
. Dnaka ruchu postępowego Zasad dnak Newtona Zasad dnak Newtona opsują zagadnena echank klascznej. Zasad te pozwalają w szczególnośc znaleźć wszstke paraetr opsujące ruch cała, take jak położene, prędkość
Wstęp do mechaniki. Wektory. Mnożenie wektorów... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Wstęp do mechank dr nż. Ireneusz Owczarek CNMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 1 dr nż. Ireneusz Owczarek Wstęp do mechank Wektory Algebra wektorów przedstawa sę (na płaszczyźne
Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową.
Pęd Pęde ciała nazyway iloczyn jego asy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. p v v Zgodnie z powyższą definicją jednostką pędu jest kilogra razy etr na sekundę: [kg*/s]
Plan wykładu. Mnożenie wektorów
Plan wykładu Wstęp do mechank dr nż. Ireneusz Owczarek CMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 2013/14 1 Algebra wektorów Knematyka 2 Układy nercjalne mechanka klasyczna Sła bezwładnośc
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
ZASADA ZACHOWANIA PĘDU
ZASADA ZACHOWANIA PĘDU; DYNAMIKA RUCHU OBROTOWEGO PRZYPOMNIENIE: Ale dv ZASADA ZACHOWANIA PĘDU dv d a ( V) Jeśl na cało dzałają sły, to cało a pzyśpeszene popocjonalne do całkowtej dzałającej sły: p V
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?
Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne
Wykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
Fizyka cząstek elementarnych
ykład XI Rozpraszane głęboko neelastyczne partonowy model protonu Jak już było wspomnane współczesna teora kwarkowej budowy hadronów ma dwojake pochodzene statyczne dynamczne. Koncepcja kwarków była z
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Przykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina
Prąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Fizyka ćwiczenia laboratoryjne
Fzyka ćwczena laboratoryjne JOLANTA RUTKOWSKA, TOMASZ KOSTRZYŃSKI, KONRAD ZUBKO SKRYPT WAT, WARSZAWA 008 www.wtc.wat.edu.pl Teora zjawsk fzycznych została pogrupowana w następujące dzały (numery ćwczeń):
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Przykład 3.2. Rama wolnopodparta
rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Wykład 2 Mechanika Newtona
Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy
Wykład FIZYKA I. 6. Zasada zachowania pędu. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Dr hab. ż. Władysław Artr Woźak Wykład FIZYKA I 6. Zasada zachowaa pęd Dr hab. ż. Władysław Artr Woźak Istytt Fzyk Poltechk Wrocławskej http://www.f.pwr.wroc.pl/~wozak/fzyka.htl Dr hab. ż. Władysław Artr
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Wykład 10 Teoria kinetyczna i termodynamika
Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
ZASADY ZACHOWANIA W FIZYCE
ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1
Bryła sztywna Przewodnik do rozwiązywania typowych zadań
Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,
Zasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega
Zachowanie energii. W Y K Ł A D VI. 7-1 Zasada zachowania energii mechanicznej.
Wykład z zyk. Potr Posmykewcz 56 W Y K Ł A D VI Zachowane energ. Energę potencjalną układu moŝna zdenować w następujący sposób: praca wykonana nad układem przez wewnętrzne sły zachowawcze jest równa zmnejszenu
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)
Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
DYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
TRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
r śm równa się wypadkowej sile działającej na
Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak
ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO
ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2
T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 85657 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wykres funkcji
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji
ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Wykład 10. Ruch w układach nieinercjalnych
Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Temat 13. Rozszerzalność cieplna i przewodnictwo cieplne ciał stałych.
Temat 13. Rozszerzalność ceplna przewodnctwo ceplne cał stałych. W temace 8 wykazalśmy przy wykorzystanu warunków brzegowych orna-karmana, że wyraz lnowy w rozwnęcu energ potencjalnej w szereg potęgowy
Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana
Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych
Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Wprowadzenie: Dynamika
Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3
Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne
LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia
LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwczena 4 Wyznaczane współczynnka restytucj Cel ćwczena Celem ćwczena jest zapoznane z podstawam modelowego opsu zderzeń oraz sposobem dośwadczalnego
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe