Wprowadzenie: Dynamika
|
|
- Judyta Murawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona 1
2 Mechanika Zasady ogólne: Ocean końcowa O ocean średnia z: KR śr. z kartkówek; A śr. z aktywności; K1 ocena z kolokwiu pierwszego; K ocena z kolokwiu drugiego KR A K1 K Ocena liczona np. wg wzoru: O 4 Przez aktywność rozuie się: zgłaszanie na zajęciach, odpowiedź przy tablicy, rozwiązywanie prac doowych Warunkie zaliczenia jest pozytywne zaliczenie kolokwiu K1 i K, zaliczenie kontrolnego zestawu zadań oraz obecność na co najniej 60% zajęć Ostateczna ocena oże być wyższa od wynikającej z O, jeżeli studen wykaże się dodatkową aktywnością naukową (nieobowiązkowe prace doowe itp.) Obecność: Obecność jest obowiązkowa Przysługuje prawo do nieobecności nieusprawiedliwionych w ciągu seestru Obecność na wszystkich zajęciach oże być preiowana Nieobecność należy natychiast usprawiedliwić po dobytej chorobie usprawiedliwienia w późniejszych terinach nie będą rozpatrywane Poprawa kolokwiu: Przysługują dwa teriny poprawkowe kolokwiu zaliczeniowych Na poprawie obowiązuje ateriał z całego seestru Kartkówki nie podlegają poprawie Z prawa do poprawy ogą korzystać tylko osoby z zaliczony kontrolny zestawe zadań oraz uregulowanyi nieobecnościai Kontrolny zestaw zadań: Każda z osób jest zobligowana do rozwiązania kontrolnego zestawu zadań, który dostępny jest na stronie hoe.agh.edu.pl/~spakula/ w zakładce Mechanika II Zadania są sparaetryzowane i każda osoba otrzyuje indywidualny paraetr podany przez prowadzącego Zadania ożna oddawać na bieżąco przed rozpoczęcie zajęć lub w godzinach konsultacji Zadania rozwiązane błędnie, zostaną zwrócone dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona
3 Przykład zadania z dynaiki (na rozgrzewkę ): Winda o asie 80kg opuszcza się w szybie ruche jednostajnie przyśpieszony i przebywa w początkowych 10s drogę 35. Wyznacz napięcie liny, na której wisi winda. Rozwiązanie: Budujey odel fizyczny (scheat, rysunki, siły) a g Punkte wyjścia większości zadań z dynaiki jest druga zasada dynaiki newtona a P i Równanie ruchu: a g wektorowe równanie ruchu Winda porusza się ruche prostoliniowy, więc zapiszey równanie ruchu skalarnie: a g skalarne równanie ruchu (jaka jest różnica?) otrzyaliśy równanie ruchu, z którego ożey obliczyć przyspieszenie a. a g chcąc uzyskać równanie drogi, należy powyższe równanie podwójnie scałkować po czasie. Po pierwszy całkowaniu przyspieszenia otrzyay równanie prędkości w funkcji czasu v(t). v a dt C g dt C v gt t C Po jednokrotny całkowaniu przyspieszenia otrzyaliśy równanie prędkości ze stałą całkowania C. Całkowania dokonaliśy przy założeniu, że siła napięcia linki jest stała (niezienna w czasie). tałą C obliczyy z warunków początkowych. Jeśli w treści zadania, nie a inforacji na teat prędkości w chwili początkowej przyjuje się ją jako zero. Dla uogólnienia przypadków załóży, że prędkość początkowa (czyli w chwili t=0) wynosi v0. Często zapisujey to w postaci v(0)=v0. Podstawy do równania prędkości v=v0, a za czas t=0. dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona 3
4 v0 g 0 0 C C v 0 Równanie prędkości wygląda więc następująco: v gt t v 0 Dokonajy teraz kolejnego całkowania. Otrzyay równanie drogi. vdt D gt t v0 dt D gt t v0t D Podobnie jak w poprzedni wypadku, stałą całkowania D obliczyy z warunków początkowych. Tylko jakie jest początkowe położenie windy x(0)=?. Jeśli w treści zadania nie podano tego wprost, pozostawia na to dowolność. Położenie początkowe zależy od iejsca przyjęcia początku układu współrzędnych. Dla wygody załóży, że środek układu współrzędnych znajduje się w środku asy windy w chwili początkowej. W taki wypadku x(0)=0. Podstawy x=0, i t=0 do powyższego równania. g0 D 0 0 v0 0 D 0 Ostatecznie równanie ruchu wynosi: gt 1 v0t g t t v0t Zauważy, że odpowiada ono równaniu drogi w ruchu jednostajnie przyspieszony at x x0 v0t gdzie x0=0. Tak dzieje się tylko w przypadku gdy siła napięcia linki jest stała. Gdyby siła zieniała się w czasie, należałoby odpowiednio scałkować równanie siły. Wróćy do zadania. Mając równanie drogi podstawy dane jakie ay, a więc wiey, że x(10)=35. (czyt. droga w dziesiątej sekundzie wynosiła 35). Podstawy te wielkości do równania drogi, oczywiście przyjując, że v0=0. dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona 4
5 1 35 g 10 0,7 g g 0,7 9,81 0, 7 9,11 9, ,8 Obliczania powyższe doprowadziły nas do odpowiedzi na pytanie, jaka jest siła naciągu liny podtrzyującej windę. Rodzi się pytanie: w jakich jednostkach jest wyrażona ta siła? koro wszystkie wielkości podczas obliczeń, iały wyiar jednostek z podstawowego układu jednostek iar I, to spodzieway się, że wynik też wyjdzie w jednostkach podstawowych. Więc siła powinna ieć wyiar [N] newton. N kg s Do sprawdzenia przeanalizujy jedno z równań, które powstawały podczas przekształceń: g 0,7 ybole g oznacza przyspieszenie zieskie wyrażone w /s ; asa wyrażona w kg. Więc zgadza się. Pytanie czy 0,7 jest wyrażone w /s tak jakbyśy oczekiwali? prawdźy! 0,7 powstało przez ponożenie 35 przez i podzielenie przez (10s) otrzyay: ,7 10 s 100 s s Więc jednostki się zgadzają. To jedna z najprostszych i najefektywniejszych etod autokorekty w zadaniach. prawdzanie jednostek! Odp.: 551N co odpowiada ciężarowi 551 kg 60kG (kg - kilogra-siła). 9,81 Pytanie zagadka! Czy się różni asa 60kg od ciężaru 60kG? dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona 5
6 Zadania z kineatyki (powtórka) Zadanie 1. Ciężarówka przeieszcza się po prostej drodze z prędkością 0k/h, następnie przyspiesza do 10k/h w ciągu 15s. Jeżeli przyspieszenie jest stałe, oblicz drogę jaką przebyła ciężarówka w czasie rozpędzania. Zadanie. Z wieży o wysokości h=1,5 rzucono pionowo w dół piłkę nadając jej początkową prędkość v0=4,5/s. Oblicz prędkość piłki w oencie uderzenia o zieię. Zadanie 3. aochód przeieszcza się z prędkością 70k/h z przyspieszenie 6000k/h wzdłuż prostej drogi. Jak długo zajie osiągnięcie prędkości 10k/h oraz jaki dystans przebędzie w ty czasie? Zadanie 4. Pociąg przeieszcza się z prędkością wg równania v=0(1-e -t ) /s, gdzie t to czas wyrażony w sekundach. Oblicz odległość przebytą przez pociąg w ciągu trzech sekund i przyspieszenie jakie iał w ty czasie. Zadanie 5. Cząstka rozpoczyna ruch w linii prostej pod wpływe przyspieszenia a=(t-6) /s, gdzie t jest czase w sekundach. Jaka jest prędkość cząstki w czasie t=6s i jakie jest jej położenie w chwili t=11s? Zadanie 6. Cząstka początkowo znajduje się w środku układu współrzędnych i porusza się wzdłuż linii prostej przez ciecz, w której prędkość cząstki zdefiniowana jest przez równanie v=1,8(1-e -0,3t ) /s, gdzie t jest wyrażone w sekundach. Oblicz przeieszczenie cząstki w ciągu pierwszych 3 sekund. Zadanie 7. Kaień spada do szybu bez prędkości początkowej. Dźwięk wywołany uderzenie kaienia o dno został usłyszany po 6,5s. od początku ruchu. Prędkość dźwięku wynosi 340/s. Znaleźć głębokość szybu. dr inż. ebastian Pakuła - Katedra Mechaniki i Wibroakustyki AGH trona 6
Wprowadzenie: Dynamika
Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła
Ruch jednostajny prostoliniowy
Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Lista 2 + Rozwiązania BLiW - niestacjonarne
Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a
05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.
Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const
Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
O ciężarkach na bloczku z uwzględnieniem masy nici
46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1
Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski
Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość
Zależność prędkości od czasu
prędkość {km/h} KINEMATYKA ruch jednostajny i przyspieszony 1. Na trasie z Olesna do Poznania kursuje autobus pospieszny i osobowy. Autobus zwykły wyjechał o 8 00 i jechał ze średnią prędkością 40 km/h.
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek
Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek 16 00-18 00 e-mail: kamil@fizyka.umk.pl Program zajęć Mechanika punktu materialnego, bryły sztywnej, fal oraz cieczy: 1.
KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 12 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t
Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI
KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mail: spakula@agh.edu.pl dr inż. Sebastian Pakuła - Kontrolny zestaw
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu.
Siła. Zasady dynaiki kg s Siła jest wielkością wektorową. Posiada określoną wartość, kierunek i zwrot. Jednostką siły jest niuton (N). 1N 1 A Siła przyłożona jest do ciała w punkcie A, jej kierunek oraz
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Scenariusz lekcji. I. Cele lekcji
Scenariusz lekcji I. Cele lekcji 1) Wiadoości Uczeń wie: jakie są skutki wzajenych oddziaływań iędzy ciałai, jaka jest treść I zasady dynaiki Newtona, jaka jest treść zasady bezwładności, co to jest bezwładność,
W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.
1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby
fizyka Pierwszy próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Przedmioty przyrodnicze Karty pracy
fizyka Pierwszy próbny egzain w trzeciej klasie ginazju część ateatyczno-przyrodnicza Przedioty przyrodnicze Karty pracy opyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2013 Pierwszy
KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI
KONTROLNY ZESTAW ZADAŃ Z DYNAMK MECHANKA mgr inż. Sebastian Pakuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mail: spakula@agh.edu.pl mgr inż. Sebastian Pakuła - Kontrolny
v=s/t [m/s] s=v t [(m/s) s=m]
Ruch prostoliniowy jednostajny to ruch, w którym: wartość prędkości pozostaje stała: v=constans prędkość obliczamy ze wzoru: v=s/t [m/s] gdzie s- droga, t- czas wykres zależności prędkości od czasu v(t)
Zadania na I etap Ligi Matematyczno-Fizycznej klasa II
Zadania na I etap Ligi Mateatyczno-Fizycznej klasa II Zad.1. Oblicz: 1. ( 7 6-81 1 ) : (11 18 ). (7 10-81 4 1 + 4 9 8 8 ) : (41 4 ) Zad.. Rozwiąż równania a) x+ =4 x+1 b) 4 x+7 =8 x- c) x-4 =4 -x d) 4
WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy
KOD UCZNIA Białystok 08.02.2007r. WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy Młody Fizyku! Przed Tobą stopień rejonowy Wojewódzkiego Konkursu Fizycznego. Masz do rozwiązania 15 zadań zakniętych i 3 otwarte.
( ) ( 2 ) Zadania na I etap Ligi Matematyczni-Fizycznej klasa II
Zadania na I etap Ligi Mateatyczni-Fizycznej klasa II Zad.1. Oblicz: 1. ( 7 6-5 81 1 ) : (11 18 ). (7 10-5 81 4 1 + 4 9 8 8 ) : (41 4 ) Zad.. Oblicz: 0,8 ( ) ( ) 5 1 : 1 Zad.. Oblicz: 1 a) ( ) 1 1 1 6
Przykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)
KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA FIZYKA marzec 2013
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZDMIOTOWA FIZYKA arzec 0 KARTA PUNKTACJI ZADAŃ (wypełnia koisja konkursowa): Nuer zadania Zad. Zad. Zad. Zad. 4 Zad. 5 SUMA PUNKTÓW Poprawna Zad. 6 Zad. 7 Zad. 8 odpowiedź
LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3
LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Wysołek plik; Koitet Główny Olipiady Fizycznej. Andrzej Wysołek Koitet
K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.
3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
KINEMATYKA czyli opis ruchu. Marian Talar
KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]
Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
SPRAWDZIAN Nr 1 (wersja A)
SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec
Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową.
Pęd Pęde ciała nazyway iloczyn jego asy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. p v v Zgodnie z powyższą definicją jednostką pędu jest kilogra razy etr na sekundę: [kg*/s]
Dynamika punktu materialnego nieswobodnego
Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian
DYNAMIKA ZADANIA. Zadanie DYN1
DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grządziel Wykład 1; 1 października 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej
Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?
Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.
Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego
Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:
Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie
Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
ZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
Zasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
DYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,
Mechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.
Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)
Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba
PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA
Inżynieria Rolnicza (90)/007 PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA Instytut Inżynierii Rolniczej, Akadeia Rolnicza w Poznaniu Streszczenie. Drgania ciągnika, szczególnie
3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Analiza wymiarowa. amper - A Θ - jednostka temperatury termodynamicznej: kelwin - K J - jednostka światłości:
Analiza wyiarowa. Międzynarodowy Układ Jednostek Miar SI Układ jednostek to zbiór jednostek iar uznanych za podstawowe oraz innych jednostek, które nazywa się pochodnyi, które przez te podstawowe się wyraŝają.
09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
WOJEWÓDZKI KONKURS FIZYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 2018/2019 31.10.2018 r. 1. Test konkursowy zawiera 18 zadań. Są to zadania zamknięte
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
Interpolacja. Interpolacja wykorzystująca wielomian Newtona
Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej
b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu.
SRAWDZIAN NR 1 MAŁGORZATA SZYMAŃSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Z wysokości 2 m nad powierzchnią gruntu puszczono swobodnie metalową kulkę. Na poziomie gruntu energia potencjalna kulki jest równa
Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:
Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się
1 WEKTORY, KINEMATYKA
Włodzimierz Wolczyński 1 WEKTORY, KINEMATYKA Wektory, działania: Mamy bazę wektorów o różnych jednostkach długości a=3 b=2 c=4 d=4 e=2 f=3 W wyniku mnożenia wektora przez liczbę otrzymujemy wektor o zwrocie:
FIZYKA. Wstęp cz.2. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wstęp cz. IZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-, pok.3 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zastosowanie rachunku różniczkowego w fizyce V t s V s t V ds PRZYKŁAD:
Układy inercjalne i nieinercjalne w zadaniach
FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości
Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE
Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE 1. Wykłady i ćwiczenia poprowadzi prof. dr hab. inż. Leszek Malinowski; pok. 420; Zespół Maszyn