Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
|
|
- Bronisław Kaczor
- 7 lat temu
- Przeglądów:
Transkrypt
1 Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1 8 g d. 1 4 g Siła wypadkowa działająca na klocek wiszący z lewej strony (patrz zadanie poprzednie) a. a taką saą wartość, jak siła wypadkowa działająca na klocek poruszający się po stole. b. jest niejsza od siły wypadkowej działającej na klocek poruszający się po stole. c. jest większa od siły wypadkowej działającej na klocek poruszający się po stole. d. jest większa od siły wypadkowej działającej na klocek o asie Wiadro z wapne o ciężarze 150 N jest podnoszone przez linę z przyspieszenie o wartości 0,3 /s 2. Siła napinająca linę a wartość a. 15 N b. 150 N c. 154,5 N d. 195 N 4. Aby wózek o asie 800 g jechał po płaszczyźnie pozioej ruche jednostajny, należy nań działać pozioo siłą o wartości 1 N. Siłą o jakiej wartości należy działać na ten wózek, aby jechał z przyspieszenie o wartości 0,5 /s 2? a. 1,4 N b. 14 N c. 41 N d. 401 N 5. Sznurek leży na stole, częściowo z niego zwisając. 2 Świadczy to o ty, że a. siła tarcia T działająca na leżącą na stole część sznurka a wartość T f s b. siła tarcia T działająca na leżącą na stole część sznurka a wartość T f s c. 2 g f s d. 2 g > f s 1
2 Szkoły ponadginazjalne 6. Ciało o asie 2 kg spada pionowo. W ciągu 3 s jego pęd a. nie ulegnie zianie. b. wzrośnie o 6 kg /s. c. wzrośnie o 60 kg /s. d. wzrośnie, ale nie wiadoo, o ile, bo brak inforacji o prędkości początkowej ciała. 7. Wózki połączone ściśniętą sprężyną (o poijalnie ałej asie) jadą raze w prawo. Tarcie poijay. Po przepaleniu nitki ściskającej sprężynę wózki zaczną się od siebie oddalać, a wartość pędu całego układu a. będzie równa zeru. b. będzie równa 2u. c. będzie równa 3u. d. nie będzie równa ani 2u, ani 3u, ale będzie różna od zera. 3 A 8. Kulkę o asie 0,2 kg, zaczepioną na sznurku o długości 40 c, rozpędzay tak, aby poruszała się po okręgu w płaszczyźnie pionowej (g = 10 /s 2 ). Najniejsza szybkość, jaką oże ieć kulka w górny punkcie okręgu (A), a wartość równą a. 0 /s b. 1 /s c. 2 /s d. 20 /s 9. Winda wraz z pasażerai o łącznej asie 900 kg startuje w dół i porusza się w początkowej fazie ruchu z przyspieszenie o wartości 1,6 /s 2. Siła sprężystości liny utrzyującej windę wynosi około a. 1,44 kn b. 7,56 kn c. 9,00 kn d. 10,44 kn B l 10. Gdy w windzie na siłoierzu zawieszono ciało o ciężarze F c, wskazał on wartość siły F > F c. Czy na tej podstawie ożna określić zwroty wektorów ui a? a. Tak, obu. b. Jedynie u. c. Jedynie a. d. Nie, żadnego. 11. Na końcach wagi sprężynowej zawieszono dwa ciężarki, każdy o asie 1 k 1 kg 1 kg Na podziałce wagi odczytay a. 0 N b. 9,8 N c. 4,9 N d. 19,6 N 12. Kulka przywiązana do nitki o długości l wiruje w płaszczyźnie pozioej. Nitka tworzy z pione kąt a. Na który z poniższych rysunków poprawnie przedstawiono siły działające na kulkę w nieinercjalny układzie odniesienia związany z kulką? a. y y y y b. y y yy c. y y yy yd. y yy l l l l l l l l l l l l l l l l F F r F r r F r F F r F r r r F F r F F r r r r F r r rr r r r rr F F F F r F r F r F r rr x x xx x x xx x x xx x x xx F c F c F c F c F c F c F c F c F c F c F c F c F c F c F c F c 2
3 Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa B Sprawdzian 2 Siła jako przyczyna zian ruchu 1. W układzie przedstawiony na rysunku: a = 30, = 5 kg, 2 = 2 k Tarcie ciała o równię poijay. Siła napinająca nić a wartość około a. 45 N b. 21 N c. 6 N d. 14 N 2. Przyspieszenie układu z poprzedniego zadania wynosi 2 a. 5 7 /s2 b /s2 c. 3 7 /s2 d. 9 7 /s2 3. Kula o asie = 1 kg jest ciągnięta do góry za poocą nitki. Maksyalne przyspieszenie, po przekroczeniu którego nitka ulega zerwaniu, wynosi a = 5 /s 2. Najniejsza siła napięcia nici powodująca jej zerwanie a wartość a. 5 N b. 10 N c. 15 N d. 20 N 4. Obciążone sanki poruszają się po powierzchni pozioej ruche jednostajny, jeśli ciągniey je, działając pozioą siłą o wartości 100 N. Jeśli wartość tej siły zwiększyy do 200 N, sanki będą się poruszać z przyspieszenie o wartości 1 /s 2. Masa sanek wraz z ładunkie wynosi a. 50 kg b. 100 kg c. 150 kg d. 200 kg 5. Wartość przyspieszenia, z który będzie się poruszało ciało o asie = 10 kg (jeśli współczynnik tarcia f = 0,05, a = 30, a wartość siły F = 10 N), wynosi około a. 2 /s 2 b. 0,1 /s 2 c. 4 /s 2 d. 0,4 /s 2 F 6. Piłka tenisowa o asie i prędkości u zderza się z poruszającą się naprzeciw niej rakietą tenisową (rysunek). Po odbiciu piłki od rakiety kierunek wektora prędkości piłki nie zienia się, a jej szybkość jest trzy razy większa, niż była przed odbicie. Wartość ziany pędu piłki jest równa a. u b. 2u c. 3u d. 4u 3 7. Na stojącą na szynach platforę o asie = 190 kg wskakuje równocześnie dwóch ludzi biegnących w przeciwne strony: pierwszy o asie = 70 kg biegnie z szybkością u 1 = 2 /s, drugi o asie 2 = 60 kg biegnie z szybkością u 2 = 5 /s Gdy ludzie wskoczą na platforę, zacznie ona poruszać się z szybkością a. 1 /s b. 0,5 /s c. 1,5 /s d. 2 /s 3
4 Szkoły ponadginazjalne 8. Pilot saolotu zatacza pętlę w płaszczyźnie pionowej. Przyjij, że proień pętli R = 400, szybkość saolotu u = 360 k/h i asa pilota = 70 kg, i oblicz wartość siły, którą fotel działa na pilota w górny punkcie pętli. a N b N c. 490 N d. 300 N 9. Wartość przyspieszenia klocków przedstawionych na rysunku jest równa 5 /s 2. Przyjujey, że bloczek oże się obracać bez tarcia, oraz poijay asę nitki i bloczka. Przyspieszenie zieskie a wartość g 10 /s kg 2 kg Współczynnik tarcia kinetycznego klocka o stół oraz wartość siły napięcia nitki są równe odpowiednio a. 0,2; 5 N b. 0,3; 10 N c. 0,4; 15 N d. 0,5; 10 N 10. Przedstawiony na rysunku układ klocków raze ze stołe porusza się w górę z przyspieszenie a. 2 a Aby klocki pozostawały względe stołu w spoczynku, współczynnik tarcia statycznego iędzy stołe a klockie o asie 2 usi ieć wartość co najniej a. g a 1( + ) b. c. g a 1( ) d. ( ) 1+ 2 g 2 ( g a) 2 2 ( g+ a) ( 1 2) a 11. Jeśli poiniey tarcie, to wartości przyspieszenia układu przedstawionego na rysunku i napięcia nici wynoszą a. a= + g N 2( 1+ 2 ) = g b. a = + g N = g + 1 c. a = 1 g N = + g d. a = 1 g N 2 = + ( + ) g 2 4
5 Szkoły ponadginazjalne 12. Kulka przywiązana do nitki o długości l wiruje w płaszczyźnie pozioej. Nitka tworzy z pione kąt a. Na który z poniższych rysunków poprawnie przedstawiono siły działające na kulkę w inercjalny układzie odniesienia? a. y y y y b. y yy c. y yy d. y yy F c l l l l l l l l l l F r r F r F F r r r r F r rr r rr FF F r F r rr x xx x xx xx xx F c F c F c F c F c F c F c F c F c 5
6 Szkoły ponadginazjalne Odpowiedzi do zadań ze sprawdzianu 2 Siła jako przyczyna zian ruchu Wersja A Zadanie Odpowiedź D A C A A C D C B C B B Wersja B Zadanie Odpowiedź B A C B D D B B D B C A 6
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
DYNAMIKA ZADANIA. Zadanie DYN1
DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie
Blok 5: Ruch po okręgu. Układy nieinercjalne. Siły bezwładności
Blok 5: Ruch po okręu. Układy nieinercjalne. Siły bezwładności ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Co szczeólneo dzieje się z ludźi w autobusie, dy wałtownie hauje on przed przejście dla pieszych, a
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Zasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.
DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,
FIZYKA Kolokwium nr 2 (e-test)
FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców
ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II
ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]
Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.
Dynamika punktu materialnego 1
Dynamika punktu materialnego 1 1. Znaleźć wartość stałej siły działającej na ciało o masie 2,5kg, jeżeli w ciągu 5s od chwili spoczynku przebyło ono drogę 40m. 2. Rakieta i jej ładunek mają masę 50000kg.
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzain aturalny aj 009 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Wyznaczenie wartości prędkości i przyspieszenia ciała wykorzystując równanie ruchu. Wartość prędkości
14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu.
Siła. Zasady dynaiki kg s Siła jest wielkością wektorową. Posiada określoną wartość, kierunek i zwrot. Jednostką siły jest niuton (N). 1N 1 A Siła przyłożona jest do ciała w punkcie A, jej kierunek oraz
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
30 = 1.6*a F = 2.6*18.75
Fizyka 1 SKP drugie kolokwium, cd. [Rozwiązał: Maciek K.] 1. Winda osobowa rusza w dół z przyspieszeniem 1m/s2. Ile wynosi siła nacisku człowieka o masie 90 kg na podłogę windy? Wynik podaj w N z dokładnością
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 12 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych
05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.
Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const
3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0
Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Zadania z fizyki. Wydział Elektroniki
Zadania z fizyki Wydział Elektroniki 4 Zasady dynamiki Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem
WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy
KOD UCZNIA Białystok 08.02.2007r. WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy Młody Fizyku! Przed Tobą stopień rejonowy Wojewódzkiego Konkursu Fizycznego. Masz do rozwiązania 15 zadań zakniętych i 3 otwarte.
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)
Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt
Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
FIZYKA Kolokwium nr 3 (e-test)
FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o
KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II
...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Przykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Ćwiczenie: "Ruch po okręgu"
Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8 DO ZDOBYCIA 50 PUNKTÓW Jest to powtórka przed etapem szkolnym. zadanie 1 10 pkt Areometr służy do pomiaru gęstości cieczy. Przedstawiono go na rysunku poniżej, jednak ty
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)
KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady
ETAP I - szkolny. 24 listopada 2017 r. godz
XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:
III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ
We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
ZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Dynamika punktu materialnego
Dynaika punktu aterialnego 1. O czasie t 1 =14.0 s saochód o asie =1200 kg był w punkcie r 1 =[100,0,25] i iał pęd p 1 =[6000,0,-3600] kg /s. Jaka była pozycja saochodu w czasie t 2 =14.5 s? 2. Kierowca
Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
III Powiatowy konkurs gimnazjalny z fizyki finał
1 Zduńska Wola, 2012.03.28 III Powiatowy konkurs gimnazjalny z fizyki finał Kod ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy składa się dwóch części: zadań testowych i otwartych
Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
I zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
pieczątka szkoły Kod ucznia - - Kod szkoły Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego.
KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych
Temat: POWTÓRZENIE WIADOMOŚCI Z DYNAMIKI
Temat: POWTÓRZENIE WIADOMOŚCI Z DYNAMIKI Scenariusz lekcji fizyki w gimnazjum klasa IIG Prowadzący lekcję - B.Sacharska Gimnazjum Towarzystwa Salezjańskiego, Szczecin, ul. Ku Słońcu 124 Dział: Dynamika-
Lista zadań nr 5 Ruch po okręgu (1h)
Lista zadań nr 5 Ruch po okręgu (1h) Pseudo siły ruch po okręgu Zad. 5.1 Na cząstkę o masie 2 kg znajdującą się w punkcie R=5i+7j działa siła F=3i+4j. Wyznacz moment siły względem początku układu współrzędnych.
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Dynamika ruchu obrotowego 1
Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
Dynamika ruchu obrotowego
Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO
PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO Wykład 3 008/009, zia 1 Poglądy na echanikę przed Newtone Arystoteles uważał, że każdy ruch wynika albo z natury poruszającego się ciała (ruch naturalny)
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA FIZYKA marzec 2013
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZDMIOTOWA FIZYKA arzec 0 KARTA PUNKTACJI ZADAŃ (wypełnia koisja konkursowa): Nuer zadania Zad. Zad. Zad. Zad. 4 Zad. 5 SUMA PUNKTÓW Poprawna Zad. 6 Zad. 7 Zad. 8 odpowiedź
POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.
Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało
09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO
Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,
dr inż. Zbigniew Szklarski
Wykład 5: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Materiał powtórzeniowy dla klas pierwszych
Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną
POWODZENIA! KOD UCZESTNIKA KONKURSU. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2011/2012 Czas trwania: 90 minut
KOD UCZESTNIKA KONKURSU Instrukcja dla uczestnika konkursu: WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 011/01 Czas trwania: 90 inut 1. W części pierwszej są do rozwiązania zadania
Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych
Zestaw 1 KINEMATYKA Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych sytuacji. Wiadomości wstępne: wektory i operacje na nich. Rodzaje ruchu,
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ
STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
PRZED KONKURSEM CZĘŚĆ 13
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy
KONKURS MATEMATYCZNO FIZYCZNY 2 grudnia 2010 r. Klasa II
...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 2 grudnia 2010 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 16 zadań. Pierwsze 12 to zadania zaknięte. Rozwiązanie tych
Mechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i
Rodzaje zadań w nauczaniu fizyki
Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności
Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Lista zadań nr 3 Dynamika (2h)
Lista zadań nr 3 Dynamika (2h) (a) Dynamika punktu (siła stała ma = F = const.) Zad. 3.1 Policzyć, jaką drogę s przebędzie ciało o masie m poruszające się po powierzchni gładkiej (brak tarcia), gdy porusza