P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
|
|
- Janusz Kuczyński
- 8 lat temu
- Przeglądów:
Transkrypt
1 TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn P narężene w unkce : lm ( r, ) 0 funkcja wektorowa. STN NPRĘŻENI W PUNKCIE zbór wektorów narężena w ustalonym unkce rzy dowolnej łaszczyźne rzekroju r const ( ) wyberamy szczególne łaszczyzny rzekroju - rostoadłe do os układu wsółrzędnych x wektor narężena rzynależny łaszczyźne rostoadłej do os x wersory normalne łaszczyzn rostoadłych do os x macerz narężena T ( ),,,, j j xx x,, j,, funkcja skalarna skalarów. KONWENCJ ZNKOWNI NPRĘŻEŃ,, - narężena normalne, ozostałe to nar. styczne naręż. normalne jest dodatne, G F jeżel jest zgodne skerowane z normalną zewnętrzną łaszczyzny nar. styczne jest dodatne, jeżel: r C D ) normalna zewnętrzna łaszczyzny jest E zgodne skerowana z osą układu, do x której jest ona równoległa ) narężene styczne jest zgodne B skerowane z osą układu, do której jest ono równoległe, lub gdy oba warunk są jednocześne nesełnone.
2 TEORI STNU NPRĘŻENI 4. TENSOR NPRĘŻENI C B F F O F F x wektor nar. na ścance F o wersorze normalnym (,, ) wektory nar. na ścankach F (,, ) F ole ścank rostoadłej do os x (rzut ścank F na na łaszczyznę rostoadłą do os x ) (,, ) I cos kąta mędzy ścankam cos kąta mędzy normalnym do ścanek cos, x cos, x sły dzałające na ścankach P sła dzałająca na ścance P warunek równowag sł (zamknęty rzestrzenny welobok sł) P P P P symetra macerzy narężeń j j + + td... konwencja sumacyjna wsółrzędne wektora narężena na ścance o normalnej j j W wynku omnożena wektora rzez macerz otrzymujemy wektor, a zatem macerz narężena mus być tensorem. 5. TRNSFORMCJ TENSOR NPRĘŻENI x e e e e e e x x x T T T macerz rzejśca j cos ( e, e j ) I wersz cos ( e, e ) cos ( e, e ) cos ( e, e ) I kolumna cos ( e, e ) cos ( e, e ) cos ( e, e )
3 TEORI STNU NPRĘŻENI. wersze macerzy rzejśca to wsółrzędne wersorów nowego układu wyrażone w ukł. starym. kolumny macerzy rzejśca to wsółrzędne wersorów starego układu wyrażone w ukł. nowym. macerz ortonormalna wzg. werszy kolumn, tzn. k k jk kj j δ j 0 j 4. rawo transformacj j k jl kl 6. NPRĘŻENI GŁÓWNE Poszukujemy takej łaszczyzny rzechodzącej rzez dany unkt, aby odowadający jej wektor narężena mał tak sam kerunek jak wersor normalny łaszczyzny. x ( ; ; ) ( ; ; ) O - mara wektora Zauważmy, że utożsamając kerunek wersora normalnego łaszczyzny z kerunkem n. "" os nowego układu, wektor narężena tworzący erwszy wersz 'nowego" tensora narężena małby nezerową tylko erwszą składową - składową normalną. Byłaby ona najwększa sośród wszystkch możlwych. Take narężene normalne nos nazwę narężena głównego, a odowadająca mu łaszczyzna to łaszczyzna główna. warunek kolnearnośc wektor narężena T j j zagadnene własne T j j j δ j j 0 + j j (war. jednostkowej dług. wersora) Warunek koneczny stnena rozwązana ze wzg. na elementy macerzy rzejśca det δ 0 j j 0 I + I I (równ. charakterystyczne) 0 I + +, I + +, I równane charakterystyczne ma zawsze erwastk rzeczywste, które można uorządkować > > każdej z wartośc głównych odowada łaszczyzna główna, określona wersorem normalnym,,,,,,
4 TEORI STNU NPRĘŻENI 4 wersory określające łaszczyzny główne są ortonormalne, tzn. o j 0 dla dla dla dowolnego tensora narężena zawsze stneją wzajemne rostoadłe narężena kerunk (łaszczyzny) główne. rocedura określana kerunków głównych, czyl zarazem macerzy rzejśca do kerunków głównych + + n. dla (*) ) wząć którekolwek sośród równań, kładąc w nch n. t ) znaleźć (t), (t) ) wyznaczyć arametr t z warunku " (*) " 4) oblczyć wartośc,, 5) ostąć analogczne dla 6) wyznaczyć 7. PŁSKI STN NPRĘŻENI stan narężena, dla którego wszystke składowe leżą w jednej łaszczyźne, n. (, x ). j j x tensor narężena 0 T macerz rzejśca x, x, cos j sn sn cos narężena główne j k jl kl + rzekształcena, + ( ) ± + 4 tg,, seudołask stan narężena - jak wyżej, ale 0. Rezultaty jak dla PSN, a trzece narężene główne
5 TEORI STNU NPRĘŻENI 5 8. EKSTREMLNE NPRĘŻENI STYCZNE Problem : W unkce znany jest tensor narężena w osach głównych. Jaką łaszczyzną należy rzekroć cało w kt., aby mara rzutu wektora narężena odowadającego tej łaszczyźne na ną samą była maksymalna? τ ( ) ; ; wektor narężena ; ; wersor normalny - mara rzutu wektora narężena na normalną τ - mara rzutu wektora narężena na łaszczyznę + + o j j Procedura rozwązana + + () + τ τ ( ) τ () + warunek + + () Zadane srowadza sę do znalezena ekstremum funkcj () z warunkem obocznym () ) z war. () wyelmnować n. wstawć do funkcj () ) warunk koneczne stnena ekstremum τ τ 0 ; 0 + rzekształcena Rozwązane : Narężena styczne osągają swoje ekstrema na łaszczyznach nachylonych od kątam 45 do łaszczyzn głównych. 9. KOŁ MOHR ( 0; ; ) ; ( 0; ; ) τ 0 ± 0707 ± 0707 ± ( ;. ;. ) τ ± ± ± ( ; 0 ; ) τ ± ± ± ( ; ; 0) Problem : W unkce znany jest tensor narężena w osach głównych. Określć zbór rozwązań (, τ ) dla dowolnych łaszczyzn rzekroju cała, rzechodzących rzez kt.. τ ; ; wektor narężena ( ) ; ; wersor normalny - mara rzutu wektora na τ - mara rzutu wektora na łaszczyznę
6 TEORI STNU NPRĘŻENI 6 tensor narężena T Procedura rozwązana > > + + o ; ; j j + + () + τ τ ( ) τ () + warunek + + () Rozwązane układu równań (), (), () wzgl. ma ostać : + ( ) ( ) ( ) ( ) τ + ( )( ) ( )( ) τ + ( )( ) ( )( ) τ Z relacj wększoścowych mędzy narężenam głównym wynkają nerównośc: + ( )( ) 0 ; τ + ( )( ) 0 ; τ ( )( ) τ Przekształcena tych nerównośc rowadzą do zwązków: + K + τ zewnętrze okręgu o romenu ( - ) / środku [ ( + ) / ; 0 ] + K + τ wnętrze okręgu o romenu ( - ) / środku [ ( + ) / ; 0 ] + K + τ wnętrze okręgu o romenu ( - ) / środku [ ( + ) / ; 0 ] + 0 τ K WNIOSEK : Dla danego tensora narężena w kt., τ określonego w osach głównych, konec wektora narężena odowadają- S S K S cego dowolnej łaszczyźne rzechodzącej rzez kt. mus leżeć w obszarze K określonym rzez koła Mohra (obszar "zacemnony"). Jest to obszar, w którym leżą wszystke ary (, τ)
7 TEORI STNU NPRĘŻENI 7 Zastosowane kół Mohra dla łaskego stanu narężena ( 0 ) ZDNIE : Dane są narężena główne oraz kąt, od jakm nachylona jest łaszczyzna do kerunku narężena. Wyznaczyć narężena normalne styczne τ rzynależne tej łaszczyźne. τ S τ ZDNIE : Dany jest tensor narężena w kt. w dowolnym ukł. wsółrzędnych (, x ). Znaleźć narężena główne oraz ch kerunk. τ x g³ P O N S N P g³ Kolejność czynnośc: ) odłożyć na os "" wartośc ) z unktu odłożyć na os "τ" wartość - jeżel > 0 to o dodatnej strone os "τ" ( na rysunku rzyjęto < 0 ). Z unktu odłożyć wartość o strone rzecwnej os "τ". Otrzymujemy unkty P P ) ołączyć unkty P P - unkt S, rzecęca odc. P -P z osą "" jest środkem koła 4) narysować koło o środku w kt. S romenu S P (S P ). Otrzymujemy unkty N N, rzecęca sę okręgu z osą "". Odcnk ON O N wyznaczają wartośc narężeń głównych gł 5) ołączyć unkt P z N - otrzymujemy oś, określającą kerunek główny odowadający erwszemu narężenu głównemu gł 6) ołączyć unkt P z N - otrzymujemy oś x, określającą kerunek główny odowadający drugemu narężenu głównemu.
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI TNU NPRĘŻENI. WEKTOR NPRĘŻENI x P P P P, P - wektoy sł wewnętznych w unktach owezchn wokół unktu P = P, P - suma sł wewnętznych na owezchn P = P = P = śedna gęstość sł wewnętznych na owezchn P P
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
Mieczysław Wilk. Materiał pomocniczy do rozwiązywania kratownic płaskich. Mielec 2007
Meczysław Wk Materał omocnczy do rozwązywana kratownc łaskch Meec 7 s treśc Dzał Nazwa dzału trona Wstę Wadomośc umejętnośc do zrozumena zaamętana Agorytm rozwązywana kratowncy łaskej metodą ttera Przykład
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k
Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T
Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych
WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Zasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
PODSTAWY MATEMATYCZNE
PODSTAWY MATEMATYCZNE ALGEBRA WEKTORÓW I TENSORÓW Baza ortonormalna w E 3 : e 1, e 2, e 3 ( e, e ) j j 1 f j 0 f j Każdy wektor w E 3 może być wyrażony jako lnowa kombnacja wersorów bazowych a a e a e
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
METODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
KINEMATYKA MANIPULATORÓW
KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!
Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2
T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej
7. Wykład VII: Warunki Kuhna-Tuckera
Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n
przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1
1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz
MECHANIKA PŁYNÓW Materiały omocnicze do wykładów oracował: ro. nzw. dr hab. inż. Wiesław Grzesikiewicz Warszawa aździernik - odkształcalne ciało stałe Mechanika łynów dział mechaniki materialnych ośrodków
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy
Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH
Ois kształtu w rzestrzeni 2D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W rzyadku tych krzywych wektory styczne w unkach końcowych są określane bezośrednio
Optymalizacja belki wspornikowej
Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23
WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23 RÓWNOWAGA SIŁ Siła owierzchniowa FS nds Siła objętościowa FV f dv Warunek konieczny równowagi łynu F F 0 S Całkowa ostać warunku równowagi łynu V nds f dv 0
GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY
Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
D. II ZASADA TERMODYNAMIKI
. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: echnologa chemczna, sem. 2017/2018 WYKŁAD D,E D. II zasada termodynamk E. Konsekwencje zasad termodynamk D. II ZAADA ERMODYNAMIKI D.1.
Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami
8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI
Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe
zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych