Szczególna i ogólna teoria względności (wybrane zagadnienia)
|
|
- Julian Malinowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 1 / 12
2 Czterowektor prędkości Element czasu własnego: dτ = ds c = c 2 dt 2 d r 2 dτ = dt γ ( ) c v Czterowektor prędkości: v µ dxµ dτ = dt dτ dx µ dt = γ W układzie spoczynkowym mamy v µ = dxµ ( ) c = dτ 0 A więc: v v v µ v µ = γ 2 (c 2 v 2 ) = c 2 Przykład: Cząstka porusza się w S po okręgu o promieniu r i środku w początku układu ze stałą prędkością v. Znajdź czterowektor prędkości cząstki w S poruszającym się względem S z prędkością u w standardowej konfiguracji. x = r cos ωt = r cos ( ) vt } { vx = v sin ( ) vt x = r sin ωt = r sin ( vt r A więc: v µ = (γ v c, γ v v x, γ v v y, 0) S r ) v y = v cos ( vt r W układzie S mamy: v µ = (γ c, γ v x, γ v y, 0) S gdzie ( γ c = γ u γ v c u ) ( c γ vv x = γ u γ v c 1 uv ) x c 2 γ = γ u γ v Q, Q 1 oraz v x = (v x u)/q, v y = v y /(γ u Q) ) r u v c 2 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 2 / 12
3 Ruch przyspieszony Relatywistyczne składanie prędkości w ogólnej postaci ( v, v to prędkości cząstki w układach S i S, u to względna prędkość układów): v = 1 { [ ] } u v v + γ u Q u 2 (γ u 1) γ u u gdzie γ v = γ u γ v Q oraz Q = 1 Czterowektor przyspieszenia: a µ = dvµ dτ = dt dτ d (γc, γ v) = γ dt u v c 2 ( c dγ dt, d(γ v) ) ( = γ dt 4 v a c, γ4 v a c 2 ) v + γ2 a γ dγ dt = 1 d 2 dt γ2 = 1 ) 2 (1 v2 1 d 2 c 2 c 2 dt v2 = 1 1 d v v 2 γ4 c 2 ( v v) = γ4 dt c 2 Czterowektory prędkości i przyspieszenia cząstki są ortogonalne: 1 d (v v) = v a = 0 2 dτ ( Dla v = (v x, 0, 0) mamy v = v x = a x a = γ 4 v ) xa x, γ 4 a x, γ 2 a y, γ 2 a z c M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 3 / 12
4 Ruch przyspieszony Ogólna transformacja dla 3-przyspieszenia: [ Q a + a = 1 γ 2 uq 3 u a c 2 v + u a u 2 ( ) ] 1 1 u γ u gdzie a, a są przyspieszeniami cząstki w układach S i S, v jest prędkością cząstki w układzie S, u jest względną prędkością układu S względem S oraz u v Q = 1 c 2. Przykład: Cząstka porusza się w układzie laboratoryjnym z prędkoscią v po okręgu x 2 + y 2 = r 2, z = 0. Znajdź wektor i czterowektor przyspieszenia w chwili gdy cząstka przecina ujemną oś y, zarówno w układzie LAB jak i w chwilowym układzie spoczynkowym cząstki (osie x, y są równoległe do x, y). S : a = (0, v 2 /r, 0) a = (γ 4 v a, γ 4 ( v a) v + γ 2 a) = (0, 0, γ 2 v 2 /r, 0) S : a = a = (0, 0, γ 2 v 2 /r, 0) (a 2 nie ulega zmianie przy TL) a = (0, γ 2 v 2 /r, 0) M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 4 / 12
5 Dynamika relatywistyczna: pęd i energia Pęd i energia cząstki relatywistycznej o masie m: p = γm v, E = γmc 2 Rozważamy zderzenie elastyczne dwóch cząstek, A i B, A poruszajacych sie z równymi i przeciwnie skierowanymi prędkościami. Zderzenie zmienia jedynie znak prędkości w kierunku osi x pędy obu czastek wzdłuż osi x muszą być takie same. Jednak ze względu na dylatację czasu mamy: T A = γt B v Ax = γv Bx A więc wyrażenie na pęd musi mieć postać: p x = γmv x lub p = γm v B y x A B Rozważamy teraz zderzenie nieelastyczne dwóch cząstek o masie m, poruszających się z równymi i przeciwnie skierowanymi prędkościami u. W wyniku zderzenia powstaje (w spoczynku) cząstka o masie M. W układzie związanym z jedną z cząstek m mamy: v = 2u 1 + u 2 γ v = 1 + u2 1 u 2 m u m M u v = 2 1+ u2 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 5 / 12 M u m u m
6 Dynamika relatywistyczna: pęd i energia Korzystając z zasady zachowania pędu dostajemy: γ v mv + 0 = γ u Mu M = 2m 1 u 2 Sprawdzamy czy wielkość E = γmc 2 jest zachowana w tym zderzeniu. W układzie w którym obie cząstki się poruszają: ( ) γ 0 Mc 2 = 2(γ u mc 2 2m ) = 2 1 m 1 u 2 1 u 2 W układzie w którym prawa cząstka spoczywa: ( 1 + u γ v mc 2 + γ 0 mc 2 = γ u Mc u 2 ) m + m = ( ) 1 2m 1 u 2 1 u 2 Uwaga: Powyższe rozważania pokazują jedynie, że wielkości γmv i γmc 2 są zachowane w tych konkretnych procesach (zderzeniach cząstek). Na pytanie czy rzeczywiscie są zachowane może odpowiedzieć tylko eksperyment (akceleratory cząstek, obserwacje kosmologiczne,...). Nazwy pęd i energia stosujemy przez analogie do dynamiki Newtona. M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 6 / 12
7 Dynamika relatywistyczna Przybliżenie nierelatywistyczne: E γmc 2 mc 2 ( = 1 v2 /c = 2 mc v 2 2 c v 4 ) 8 c Bardzo ważny związek energii i pędu: ( ) E 2 p 2 c 2 = γ 2 m 2 c 4 γ 2 m 2 v 2 c 2 = γ 2 m 2 c 4 1 v2 c 2 Dla fotonu (m = 0) mamy: E = pc = mc mv = m 2 c 4 Uwaga: Każda bezmasowa cząstka musi się poruszać z prędkością światła (musi być γ, aby energia E > 0). Znając pęd i energię cząstki znajdujemy jej prędkość: Ile wynosi mc 2 : } m = 1kg mc 2 = (1kg)( m/s) J 6000kWh/rok W s/rok = J/rok p E = v c 2 Anihilacja to najbardziej wydajny proces zamiany masy na energię / = lat M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 7 / 12
8 Transformacje Lorentza energii i pędu Niech cząstka w układzie S ma prędkość u, energię E oraz pęd p. Układ S porusza się w standardowej konfiguracji względem układu S z prędkością v. u = u + v 1 + u v S : E = γ u m oraz p = γ u mu S : E = γ u m = γ u γ v (1 + u v)m ( p = γ u mu = γ u γ v (1 + u v)m γ u = γ u γ v (1 + u v) u +v 1+u v ) = γ u γ v (u + v)m A więc transformacje energii i pędu dla pojedynczej cząstki mają postać: E = γ(e + vp ) p x = γ(p x + ve ) p y = p y p z = p z Czterowektor energii-pędu: p µ = mv µ = (γmc, γm v) = ( E c, p) Ogólne transformacje Lorentza dla energii i pędu (S i S poruszają się w standardowej konfiguracji ze wzgledną prędkością u): E = γ u (E u p) [ ] u p p = p + u u 2 (γ E u 1) γ u c M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 8 / 12
9 Masa niezmiennicza (inwariantna) Ze względu na liniowość TL są one słuszne również dla układu cząstek: E = γ ( E + v p ) p = γ ( p + v E ) A nawet dla dowolnej kombinacji liniowej energii i pędów. W szczególności widać, że jeśli zasada zachowania energii (ZZE) i pędu (ZZP) jest spełniona w jednym układzie inercjalnym, to jest też spełniona w każdym innym układzie inercjalnym. ZZP implikuje ZZE i na odwrót. Korzystając z czteropędu ZZEiP zapisujemy: Masa niezmiennicza: p pocz = p kon E 2 p 2 = γ 2 (E + vp ) 2 γ 2 (p + ve ) 2 = 1 ( = E 2 1 v 2 (1 v 2 ) p 2 (1 v 2 ) ) = E 2 p 2 W szczególności mamy: E 2 tot p 2 tot = E 2 CM M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 9 / 12
10 Zderzenie elastyczne cząstek Przykład: Cząstka o masie m i energii E zderza się elastycznie z identyczną cząstką znajdującą się w spoczynku, w taki sposób, że obie rozpraszają się pod kątami θ względem kierunku ruchu cząstki padającej. Wyrazić kąt θ poprzez E i m. Czteropędy cząstek przed zderzeniem: p 1 = (E, p, 0, 0) p 2 = (m, 0, 0, 0) p = E 2 m 2 E m m Czteropędy cząstek po zderzeniu: θ θ p 1 = (E, p cos θ, p sin θ, 0) p 2 = (E, p cos θ, p sin θ, 0) ( E + m ZZEiP pozwalają zapisać: p 1,2 =, p ) 2 2, ±p 2 tg θ, 0 ( ) ( ) 2 p 2 E + m ( p ) 2 1,2 = (1 + tg 2 θ) = m cos 2 θ = E 2 m 2 E 2 + 2Em 3m 2 = E + m E + 3m M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 10 / 12
11 Rozpad cząstki Przykład: Cząstka o masie M i energii E rozpada się na dwie identyczne cząstki. W układzie laboratoryjnym są one emitowane pod kątami π/2 i θ. Znaleźć energie powstałych cząstek. Czteropęd cząstki przed rozpadem: p 1 = (E, p, 0, 0) p = E 2 M 2 Czteropędy cząstek powstałych w wyniku rozpadu: p 1 = (E 1, 0, p 1, 0) p 2 = (E 2, p 2 cos θ, p 2 sin θ, 0) p 1,2 = E M E 2 1,2 m2 ZZP dla składowej x daje p 2 cos θ = p, natomiast składowe y muszą być przeciwnego znaku, co prowadzi do: p 1 = (E 1, 0, p tg θ, 0) p 2 = (E 2, p, p tg θ, 0) ZZE daje: E = E 1 + E 2 = p 2 tg 2 θ + m 2 + p 2 (1 + tg 2 θ) + m 2 Ostatecznie dostajemy: E 1 = E2 p 2 = M 2 2E 2E oraz E 2 = E2 + p 2 2E = 2E2 M 2 2E M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 11 / 12 θ
12 Jednostki w fizyce wysokich energii Przykład: (rozpad cząstki, cd.) p p 1 = p 2 p 2 2pp 1 + p 2 2 M 2 2EE 1 + m 2 = m 2 E 1 = M 2 2E E 2 = E2 +p 2 2E = 2E2 M 2 2E Jednostki w fizyce cząstek elementarnych: Energia spoczynkowa protonu: } E p = m p c 2 = ( kg)( m/s) J E 1 ev = ( C)(1 J/C) = p = 938 MeV J Mówimy, że masa protonu wynosi 938 MeV. m p = MeV, m n = MeV, m π = 137 MeV, m e = MeV,... 1MeV/c 2 = kg M. Przybycień (WFiIS AGH) Szczególna Teoria Względności Wykład 4 12 / 12
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Bardziej szczegółowoV.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoMechanika relatywistyczna Wykład 13
Mechanika relatywistyczna Wykład 13 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/32 Czterowektory kontrawariantne
Bardziej szczegółowoMechanika relatywistyczna Wykład 15
Mechanika relatywistyczna Wykład 15 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/40 Czterowektory kontrawariantne
Bardziej szczegółowoCZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) ZADANIA
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 2013) ZADANIA Nierelatywistyczne Relatywistyczne Masa M = m 1 + m 2 M = m 1 + m 2 Zachowana? zawsze tylko w zderzeniach
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki
Bardziej szczegółowoCZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina
Bardziej szczegółowoKinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Bardziej szczegółowoTRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
Bardziej szczegółowover teoria względności
ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład VIII: relatywistyczna definicja pędu ruch pod wpływem stałej siły relatywistyczna definicja energii, zasady zachowania transformacja Lorentza dla energii
Bardziej szczegółowoPodstawy fizyki sezon 1 XI. Mechanika relatywistyczna
Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka
Bardziej szczegółowoElementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Bardziej szczegółowoTheory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XII: masa niezmiennicza i układ środka masy zderzenia elastyczne czastki elementarne rozpady czastek rozpraszanie nieelastyczne Dynamika relatywistyczna
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoFIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Wprowadzenie Zagadnienia ruchu ciał w mechanice nierelatywistycznej (Newtona/Galileusza) rozwiązywaliśmy w oparciu o równania ruchu. Ruch ciała jest zadany przez działające na
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 2 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Bardziej szczegółowoLXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Bardziej szczegółowoPodstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu
Bardziej szczegółowoIV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Bardziej szczegółowoCZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie I (luty, 2013) u Wyprowadzenie transformacji Lorentza u Relatywistyczna transformacja prędkości u Dylatacja czasu u Skrócenie długości
Bardziej szczegółowoZderzenia relatywistyczna
Zderzenia relatywistyczna Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd cząstki: gdzie Relatywistyczne wyrażenia na energię cząstki: energia kinetyczna: energia spoczynkowa:
Bardziej szczegółowoTransformacja Lorentza - Wyprowadzenie
Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie
Bardziej szczegółowoPostulaty szczególnej teorii względności
Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności
Bardziej szczegółowoVI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 10 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Bardziej szczegółowoZasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Bardziej szczegółowoSzczególna teoria względności
Szczególna teoria względności Wykład VI: energia progowa foton rozpraszanie Comptona efekt Doplera prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Bardziej szczegółowoFizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoCząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Bardziej szczegółowoZadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Bardziej szczegółowoZasady względności w fizyce
Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,
Bardziej szczegółowoPrawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Bardziej szczegółowoFizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
Bardziej szczegółowoZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA. Rys. Transformacja Galileusza
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Wstęp Jeden z twórców mechaniki (klasycznej).
Bardziej szczegółowomechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Bardziej szczegółowoPodstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Bardziej szczegółowoWykład Zasada względności Galileusza. WARIANT ROBOCZY Względność.
Wykład z fizyki Piotr Posmykiewicz 1 Wykład 9 WARIANT ROBOCZY Względność. Teoria względności składa się właściwie z dwóch różnych teorii: szczególnej teorii względności i ogólnej teorii względności. Szczególna
Bardziej szczegółowoFizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Bardziej szczegółowoInterwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości
III.3 Transformacja Lorentza położenia i pędu cd. Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości Jan Królikowski Fizyka IBC 1 Geometria czasoprzestrzeni-
Bardziej szczegółowoIII.2 Transformacja Lorentza położenia i czasu.
III.2 Transformacja Lorentza położenia i czasu. Transformacja Lorentza Geometria czasoprzestrzeni interwał. Konsekwencje transformacji Lorentza: dylatacja czasu i skrócenie długości. Jan Królikowski Fizyka
Bardziej szczegółowoNiestandardowe ujęcie dynamiki relatywistycznej oraz klasycznej teorii elektromagnetyzmu
Niestandardowe ujęcie dynamiki relatywistycznej oraz klasycznej teorii elektromagnetyzmu Krzysztof Rębilas Katedra Chemii i Fizyki, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie Al. Mickiewicza
Bardziej szczegółowoTransformacja Lorentza Wykład 14
Transformacja Lorentza Wykład 14 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/43 Względność Galileusza Dotychczas
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI)
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI) Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Rys. Albert
Bardziej szczegółowo1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoOdp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Bardziej szczegółowoZasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Bardziej szczegółowoCzym zajmuje się teoria względności
Teoria względności Czym zajmuje się teoria względności Głównym przedmiotem zainteresowania teorii względności są pomiary zdarzeń (czegoś, co się dzieje) ustalenia, gdzie i kiedy one zachodzą, a także jaka
Bardziej szczegółowoRozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający
Bardziej szczegółowoRezonanse, Wykresy Dalitza. Lutosława Mikowska
Rezonanse, Wykresy Dalitza Lutosława Mikowska 19.10.2015 26.10.2015 REZONANSE Analizę fal parcjalnych można zastosować do opisu rozpraszania dwóch cząstek, traktując jedną jako centrum rozpraszające, a
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoRównanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoWstęp do oddziaływań hadronów
Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie
Bardziej szczegółowoWykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Bardziej szczegółowoStreszczenie Wymagania Plan szczegółowy
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2017/2018 1100-1B01 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa
Bardziej szczegółowoIII. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Bardziej szczegółowoWYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa
Wszechświat cząstek elementarnych WYKŁAD 10 29.04 29.04.2009.2009 1 Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Cząstki fundamentalne w Modelu Standardowym
Bardziej szczegółowoZasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia
Bardziej szczegółowobędzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Bardziej szczegółowoFIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Bardziej szczegółowoMatematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura
Bardziej szczegółowoWykład 2 Mechanika Newtona
Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy
Bardziej szczegółowoFizyka 1 (mechanika) AF14. Wykład 12
Fizyka 1 (mechanika) 1100-1AF14 Wykład 12 Jerzy Łusakowski 18.12.2017 Plan wykładu Doświadczenie Michelsona - Morley a Transformacja Lorentza Synchronizacja zegarów Wnioski z transformacji Lorentza Doświadczenie
Bardziej szczegółowoRuch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. Ireneusz Mańkowski
Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. I LO im. Stefana Żeromskiego w Lęborku 2 kwietnia 2012 Ruch ładunku równolegle do linii pola Ruch
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XIV: zasady zachowania (przypomnienie) czastki elementarne rozpady czastek rozpraszanie nieelastyczne foton jako czastka, efekt Dopplera i efekt Comptona
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoMatura z fizyki i astronomii 2012
Matura z fizyki i astronomii 2012 Zadania przygotowawcze do matury na poziomie podstawowym 7 maja 2012 Arkusz A1 Czas rozwiązywania: 120 minut Liczba punktów do uzyskania: 50 Zadanie 1 (1 pkt) Dodatni
Bardziej szczegółowoTomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Bardziej szczegółowoRozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność
Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność (pseudorapidity). Rozpraszanie leptonów na hadronach. Zmienna x Bjorkena.
Bardziej szczegółowoSzczególna teoria względności
5.04.08 Szczególna teoria względności Gdzie o tym więcej poczytać? Katarzyna Sznajd Weron Dlaczego ta teoria jest szczególna? Albert Einstein (905) Dotyczy tylko inercjalnych układów odniesienia. Spełnione
Bardziej szczegółowoOddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca
Bardziej szczegółowoMatematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład / 6 Ortonormalne
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowo