Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową."

Transkrypt

1 Pęd Pęde ciała nazyway iloczyn jego asy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. p v v Zgodnie z powyższą definicją jednostką pędu jest kilogra razy etr na sekundę: [kg*/s] Pęde całkowity układu kilku ciał nazyway suę wektorową pędów poszczególnych ciał wchodzących w skład układu. p p p... p c 3 p c p p p p p p Układ nazyway izolowany jeśli nie oże on w żaden ożliwy sposób oddziaływać z otoczenie. W szczególności nie oże w ni żadna siła pochodząca z poza układu. W praktyce, układy izolowane nie istnieją, ale ożey za układ izolowany uznać na przykład układ, w który wypadkowa sił zewnętrznych działających na ciała wchodzące w skład układu jest równa zeru.

2 Zasada zachowania pędu Zasada zachowania pędu ówi, że pęd całkowity układu izolowanego jest stały. p c const Zasada zachowania pędu oznacza, że jeśli wyznaczyy pęd całkowity układu w pewnej chwili czasu, to w każdej następnej chwili czasu pęd układu pozostaje niezieniony. W szczególności, jeśli pęd całkowity jest równy zeru to pozostaje on równy zeru. p pocz p konc PRZED v v 3 v v v pęd całkowity przed zderzenie zderzenie niesprężyste pęd całkowity po zderzeniu PO v 3 W zderzeniu niesprężysty ciała uczestniczące w zderzeniu sklejają się w jedno ciało, czeu towarzyszy wydzielenie się ciepła. W takich zderzeniach obowiązuje zasada zachowania pędu

3 Energia Energia jest wielkością skalarną charakteryzującą zdolność do wykonania pracy. Energia oże przybierać różne fory (np. energia echaniczna, energia cieplna). Jednostką energii jest dżul oznaczany sybole [J]. Energia echaniczna oże przybierać dwie fory: energii kinetycznej lub energii potencjalnej. Energia kinetyczna jest forą energii związaną z ruche (postępowy lub obrotowy). Ciało posiada energię kinetyczną kiedy jest w ruchu. Jej wartość jest określona jako połowa iloczynu asy ciała i kwadratu jego prędkości postępowej. E k v Fakt, że ciało posiada energię kinetyczną oznacza, że oże ono wykonać pracę, na przykład uderzając w inne ciało powodując jego przeieszczenie lub nagrzanie. Jednocześnie jeśli chcey nadać nieruchoeu ciału pewną energię kinetyczną usiy wykonać pracę na nadanie u prędkości. Związek poiędzy pracą a energią ożna zawrzeć w następujący sforułowaniu: Ziana energii kinetycznej ciała jest równa pracy wykonanej nad ty ciałe. W v v

4 Energia potencjalna jest forą energii związaną z położenie ciała. Ciało oże posiadać zdolność do wykonania pracy na przykład w związku ze swoi położenie w polu grawitacyjny Ziei (grawitacyjna energia potencjalna), lub z odkształcenie sprężyny (sprężysta energia potencjalna). Grawitacyjna energia potencjalna Sprężysta energia potencjalna h E p gh E p 0 E p 0 E kx p x g przyspieszenie zieskie k stała sprężyny Pozio zera energii potencjalnej oże być wybrany dowolnie, jednak nie oznacza to, że oże on być dowolnie zieniany. Jeśli dane położenie ciała uznay jako odpowiadające zerowej energii potencjalnej, to położenie to należy konsekwentnie uznawać jako zerowe podczas dalszych obliczeń energii. Wybór zera energii potencjalnej dyktowany jest zazwyczaj wygodą obliczeń. W powyższych przykładach przyjęto E p =0 na pozioie powierzchni ziei (w przypadku grawitacyjnej energii potencjalnej) oraz dla sprężyny nierozciągniętej (dla sprężystej energii potencjalnej).

5 Zasada zachowania energii Zasada zachowania energii całkowitej jest jedną z najbardziej fundaentalnych zasad fizyki. Mówi ona, że w układzie izolowany całkowita energia jest zachowana. Energia układu oże zieniać swoją forę np. z energii echanicznej przechodzić w energię cieplną podczas tarcia jednak sua wszystkich rodzajów energii pozostaje stała. Zasada zachowania energii echanicznej obowiązuje, gdy zaniedbać ożey energię cieplną, czyli ożey przyjąć, że całkowita energia układu jest energią echaniczną. W taki przypadku zasada ta głosi, że sua energii kinetycznej i potencjalnej układu jest stała. E k E p const E p gh 0 E k Podczas upuszczania ciała z wysokości h, w chwili puszczenia ciała jego całkowita energia jest energią potencjalną h E p 0 E k v W oencie osiągnięcia poziou powierzchni ziei energia całkowita jest energią kinetyczną, równą początkowej energii potencjalnej gh v

6 Zderzenie sprężysty nazyway takie zderzenie, któreu nie towarzyszy wydzielanie ciepła (tzn. ciała uczestniczące w zderzeniu nie sklejają się, ale odbijają od siebie). W zderzeniach takich obowiązuje zasada zachowania energii kinetycznej oraz zasada zachowania pędu. Zderzenie centralne to takie zderzenie, w który zderzające się ciała poruszają się po tej saej prostej zarówno przed jak i po zderzeniu. Należy paiętać, że w zderzeniach niesprężystych nie obowiązuje zasada zachowania energii kinetycznej. Całkowita energia jest jednak zachowana, gdyż bilans energii uzupełnia energia cieplna. Rzeczywiste zderzenia nie są ani doskonale sprężyste, ani doskonale niesprężyste są zawsze częściowo niesprężyste (tzn. zawsze podczas zderzenia wydzielana jest pewna ilość ciepła). W pewnych przypadkach ilość ta jest na tyle ała, że ożey zderzenie uznać za sprężyste. v v 0 v v zderzenie sprężyste v v v zasada zachowania pędu v v v zasada zachowania energii kinetycznej

7 Zadanie. Na jadącą z prędkością v=6/s platforę o asie M=0 kg spadł pozioo worek piasku o asie = kg. Ile wynosiła po upadku prędkość platfory z workie piasku? Rozwiązanie M v M u Przed upadkie worka jego prędkość pozioa wynosi 0. Upadek worka traktujey jako zderzenie niesprężyste. Platfora przekazuje część swojego pędu workowi i dalej porusza się raze z workie. Jak wynika z zasady zachowania pędu wiey, że pęd platfory przed upadkie worka jest równa pędowi platfory z workie po upadku: 0 M v M u Przekształcając powyższe równanie otrzyujey wyrażenie na prędkość platfory z workie piasku: Podstawiając dane liczbowe otrzyujey: u M v M 0kg 6 / s u 5 / s kg

8 Zadanie.Na gładkiej podłodze leży drewniany klocek o asie M=7kg. W kierunku klocka zostaje wystrzelona z pistoletu kula o asie = 0g poruszająca się z prędkością v=00 /s. Kula przebija klocek i po przebiciu porusza się w ty say kierunku, ale z prędkością v =30/s. Oblicz prędkość u klocka po ty, jak przeszła przez niego kula. Rozwiązanie v M M u v Pęd układu przed przebicie klocka przez kulę jest pęde kuli. Przejściu kuli przez klocek towarzyszy wydzielenie ciepła, więc oże być traktowane jako zderzenie niesprężyste. Po przejściu kuli na pęd układu składa się pęd kuli i pęd klocka, który uzyskał część pierwotnego pędu kuli. Zapisując zasadę zachowania pędu ay: v v M u Przekształcając powyższe równanie otrzyujey: Podstawiając dane liczbowe ay: v v M u 0 0. kg 00 / s 30 / s u 0. / s 7kg

9 Zadanie 3. W klocek o asie M uderza poruszająca się z prędkością v kulka kitu i przykleja się do niego. Klocek wraz kulką kitu zaczynają się poruszać. Oblicz drogę s jaką przebędzie klocek do chwili zatrzyania jeśli współczynnik tarcia klocka o podłogę wynosi f. Rozwiązanie v M T M Korzystając z zasady zachowania pędu ożey wyznaczyć prędkość jaką posiada klocek wraz z przyklejony kite tuż po zderzeniu: Z czego wynika: v M u v u M Na skutek działania stałej, przeciwnej do kierunku ruchu siły tarcia T klocek będzie poruszał się ruche jednostajnie opóźniony, aż do oentu zatrzyania po przebyciu drogi s. Ujene przyspieszanie jakiego doznaje klocek wynosi T a fg M Drogę jaką przebędzie klocek do oentu zatrzyania (czyli do chwili kiedy jego prędkość będzie równa zero) ożey obliczyć z równania: at s ut fgt ut Czas po jaki klocek się zatrzya wyznaczy z warunku zerowej prędkości końcowej: Szukany czas wynosi: t u fg Co ostatecznie prowadzi do końcowego wyniku: s u u fg fg u u fg s u fg 0 u at u fgt fg v M

10 Zadanie 4. Jaką pracę wykona silnik saochodu o asie =000kg, który porusza się z przyspieszenie a=/s na odcinku drogi s=00? Współczynnik tarcia kół saochodu o podłoże wynosi f=0.. Rozwiązanie F T Na przyspieszający saochód działają dwie siły: siła pochodząca od silnika F oraz siła tarcia T. Wypadkowa tych sił nadaje saochodowi przyspieszenie a. Na ocy drugiej zasady dynaiki ożey napisać: Wartość siły tarcia wynosi: a F T T f F N fg Możey wyznaczyć wartość siły pochodzącej od silnika: Praca siły F na drodze s jest równa: F a T a fg a fg W F s a fg s Ostateczny wynik otrzyujey po podstawieniu wartości liczbowych: 5 / s 0. 0 / s J W 000kg

11 Zadanie 5. W spoczywającą kulę o asie M uderza druga kula o asie poruszająca się z prędkością v. Po zderzeniu kule sklejają się i poruszają dalej. Jaka ilość ciepła wydzieliła się podczas zderzenia? Rozwiązanie v M M u Zderzenie dwóch kul jest niesprężyste, więc ożey skorzystać z zasady zachowania pędu, lecz nie jest spełniona zasada zachowania energii echanicznej. Prędkość sklejonych kul ożey obliczyć z zasady zachowania pędu: z czego ay: v M u v u M Bilans energii kinetycznej uzupełnia energia cieplna Q. Jej wartość ożey otrzyać odejując początkową i końcową energię całkowitą układu: Ostatecznie dostajey: v Q v M u v M M Q v v M

12 Zadanie 6. Wahadło balistyczne służy do poiaru prędkości pocisków. Składa się ono z asywnego bloku drewnianego o asie M wiszącego pionowo na dwóch sznurkach. Pocisk o asie porusza się pozioo z nieznaną prędkością v, uderza w blok i grzęźnie w ni. Jak wyznaczyć nieznaną prędkość pocisku? v M h Rozwiązanie Możey zastosować zasadę zachowania pędu dla przedziału czasu poiędzy chwilą tuż przed i tuż po zderzeniu. v M u Gdzie u jest prędkością bloku wraz z tkwiący w ni pociskie tuż po zderzeniu. Po zderzeniu, blok wraz z pociskie unoszą się na aksyalną wysokość h. Cała energia kinetyczna bloku wraz z pociskie zaienia się w energię potencjalną. M u M gh Po rozwiązaniu powyższych równań otrzyujey wyrażenie na szukaną prędkość pocisku: M v gh

13 Zadanie 7. Łyżwiarz o asie =80kg jedzie w kierunku wschodni z prędkością v =6k/h. Łyżwiarka o asie =50kg jedzie w kierunku północny z prędkością v =8k/h. Para wpada na siebie, obejuje i jedzie dalej raze. Jaka jest wspólna prędkość pary łyżwiarzy? Jaka część początkowej energii kinetycznej została wytracona w wyniku zderzenia? Rozwiązanie y y v x v + v x Stosujey zasadę zachowania pędu oddzielnie dla składowej x i składowej y pędu. Dla składowej x ay: Dla składowej y: v cos v v sin v Powyższy układ równań ożey rozwiązać dzieląc drugie z równań przez pierwsze. Otrzyujey: tan v v Wykorzystując równanie na składową y pędu ay: v v 4 8. k / h sin

14 Początkowa energia kinetyczna pary łyżwiarzy wynosiła: E k v v J Końcowa energia kinetyczna łyżwiarzy wynosiła: v 5. J E k 6 Procentową zianę energii kinetycznej ożey zapisać jako: E k E k 5% E k W wyniku zderzenia łyżwiarzy wytracona została nieco ponad połowa początkowej energii kinetycznej.

15 Zadania do saodzielnego rozwiązania. Dwie asy i są w spoczynku, a iędzy nii znajduje się ściśnięta sprężyna. Jaki będzie stosunek prędkości obu as gdy sprężyna zostanie zwolniona? (Odp.:v /v = / ). Dwie asy M=5kg i =kg zderzają się centralnie i zatrzyują się po zderzeniu. Oblicz prędkość asy M jeśli prędkość asy wynosiła przed zderzenie 3/s. (Odp.:v=./s) 3. Klocek o asie kg zderza się sprężyście z drugi klockie pozostający przed zderzenie w spoczynku. Pierwszy klocek po zderzeniu porusza się dalej w ty say kierunku ale z prędkością równą 5% prędkości początkowej. Jaka była asa drugiego klocka? (Odp.:=.kg) 4. Dwie kulki plasteliny o asach M=5g i =3g poruszają się z prędkościai odpowiednio v =/s i v =4/s skierowanyi w ta saa stronę. Oblicz prędkość kulek po ty jak zderzyły się one centralnie i niesprężyście. (Odp.:v=9/s) 5. Rozwiąż poprzednie zadanie rozpatrując przypadek sprężystego, centralnego zderzenia dwóch kul stalowych. (Odp.:v =6/s, v =8/s) 6. Pocisk o asie =0 kg zostaje wystrzelony z araty o asie M=3000kg pozioo, z prędkością wylotową 60/s. Zakładając brak tarcia o podłoże obliczyć jaka będzie prędkości odrzutu araty. (Odp.:v=0./s) 7. Działo o asie M=0 ton porusza się z prędkością v=/s po pozioy podłożu. Jaka powinna być asa wystrzelonego w kierunku ruchu pocisku, żeby działo zatrzyało się po strzale. Prędkość wylotowa pocisku u=0/s (Odp.:=tony) 8. Pocisk lecący z prędkością 30/s rozerwał się w powietrzu na dwa równej wielkości kawałki. Jeden z kawałków zatrzyał się i spadł na zieię. Oblicz prędkość drugiego z kawałków. (Odp.:v=60/s) 9. Pojazd iędzy planetarny waży tony. Po wyrzuceniu paliwa o asie 400 kg pojazd wznosi się pionowo na 000. Oblicz prędkość wyrzucanego paliwa. (Odp.:v=560/s) 0. Stojący na pozioej tafli lodu łyżwiarz o asie 80kg rzuca pozioo kaienie o asie 00g. Prędkość kaienia wynosi 5/s. Po rzucie łyżwiarz zatrzyuje się po przejechaniu 0. Ile ciepła zostało wydzielone podczas tarcia łyżew o lód od chwili rzutu do oentu zatrzyania? (Odp.:Q= J). Trzy doskonale sprężyste kulki o asach =3kg, =kg, 3 =kg, wiszą na równoległych nitkach tak, że kulki leżą na jednej prostej i stykają się powierzchniai. Kulka zostaje odchylona i uderza z prędkością v=0.5/s w kulkę. Jaką prędkość uzyska kulka 3? (Odp.:v=0.8/s)

16 . Pod jaki inialny kąte należy wystrzelić z araty pocisk aby ógł on przelecieć nad ure o wysokości 40? Pocisk opuszcza lufę z prędkością 35/s. (Odp.:=53.3) 3. Klocek o ciężarze 44N pchnięto w górę po równi pochyłej, nachylonej do poziou pod kate 30 stopni z prędkością początkową 5/s. Okazało się, że ciało przebyło drogę s=.5, zatrzyało się, a następnie ześliznęło się w dół. Oblicz siłę tarcia ciała oraz prędkość ciała przy podstawie równi. (Odp.:F=6N, v=/s) 4. Do sznurka o długości 50 c przytwierdzono kulę o asie 0.3kg i pozwolono jej opaść w dół w chwili kiedy sznurek był w pozycji pozioej. W najniższy punkcie swej drogi kula uderza w leżący na stole klocek o asie 3kg. Zderzenie jest sprężyste. Oblicz prędkość kuli w oencie zderzenia oraz prędkość bloku tuż po zderzeniu. (Odp.:v k =3.3/s, v b =0.3/s) 5. Kula etalowa o asie =5kg spada z wysokości h= na pozioą podłogę i po odbiciu wznosi się ponownie na wysokość 30c. Jaki pęd oddała kula podłodze w czasie uderzenia? (Odp.:p=34.3kg /s) 6. Piłka o asie 0.5kg uderza z prędkością 30/s z stalową płytę od kąte 45 i odbija się pod ty say kąte i z prędkością o takiej saej wartości. Jak zieniła się wartość i kierunek pędu piłki podczas uderzenia? (Odp.:p=.kg /s prostopadle do płyty) 7. W ato wodoru uderza elektron w taki sposób, że ruch po zderzeniu odbywa się po tej saej prostej co przed zderzenie. Elektron jest 840 razy lżejszy od atou wodoru. Zderzenie jest sprężyste. Jaką część swojej energii kinetycznej przekaże elektron atoowi wodoru. (Odp.:0.%) 8. Oblicz z jaką siłą działa dubeltówka na raię strzelca przy wystrzale. Zakładay, że pochodząca od dubeltówki siła jest stała i przesuwa raię strzelca o.5 c jednocześnie gdy kula opuszcza lufę. Masa dubeltówki M=5kg asa kuli =0g, prędkość wylotowa kuli v=500/s (Odp.:F=67N) 9. Kaień o asie.5 tony spadając z wysokości h= wbija pal w zieie na głębokość 5c. Znaleźć siłę oporu ziei oraz czas trwania uderzenia przy założeniu że było ono niesprężyste. (Odp.:F= N, t= 0.06s) 0. Dwie ciężarówki A i B jadące odpowiednio na południe i zachód zderzają się na skrzyżowaniu i sczepiają się. Ciężarówka A iała asę 4.5 tony i jechała z prędkością 60k/h, ciężarówka B o asie 6 ton jechała z prędkością 90k/h. (Odp.:v=46k/h skierowane pod kąte 34 na zachód od kierunku południowego)

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ] Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu.

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu. Siła. Zasady dynaiki kg s Siła jest wielkością wektorową. Posiada określoną wartość, kierunek i zwrot. Jednostką siły jest niuton (N). 1N 1 A Siła przyłożona jest do ciała w punkcie A, jej kierunek oraz

Bardziej szczegółowo

Lista 2 + Rozwiązania BLiW - niestacjonarne

Lista 2 + Rozwiązania BLiW - niestacjonarne Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla. Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń

Bardziej szczegółowo

FIZYKA R.Resnick & D. Halliday

FIZYKA R.Resnick & D. Halliday FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

FIZYKA Kolokwium nr 3 (e-test)

FIZYKA Kolokwium nr 3 (e-test) FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

Zasada zachowania pędu 1

Zasada zachowania pędu 1 Zasada zachowania pędu 1 1. Z działa o asie 5 10 3 kg wylatuje pocisk o cięŝarze 100 kg. Energia kinetyczna wylatującego pocisku wynosi 7.5 10 6 J. Jaką energię kinetyczną uzyskuje działo wskutek odrzutu?

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

MECHANIKA 2. Teoria uderzenia

MECHANIKA 2. Teoria uderzenia MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu.

SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu. SRAWDZIAN NR 1 MAŁGORZATA SZYMAŃSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Z wysokości 2 m nad powierzchnią gruntu puszczono swobodnie metalową kulkę. Na poziomie gruntu energia potencjalna kulki jest równa

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

Scenariusz lekcji. I. Cele lekcji

Scenariusz lekcji. I. Cele lekcji Scenariusz lekcji I. Cele lekcji 1) Wiadoości Uczeń wie: jakie są skutki wzajenych oddziaływań iędzy ciałai, jaka jest treść I zasady dynaiki Newtona, jaka jest treść zasady bezwładności, co to jest bezwładność,

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

ZASADY ZACHOWANIA W FIZYCE

ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy KOD UCZNIA Białystok 08.02.2007r. WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy Młody Fizyku! Przed Tobą stopień rejonowy Wojewódzkiego Konkursu Fizycznego. Masz do rozwiązania 15 zadań zakniętych i 3 otwarte.

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000) KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Obejmuje u mnie działy od początku do POLE GRAWITACYJNE 01 WEKTORY, KINEMATYKA. RUCH JEDNOSTAJNY

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Środek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu.

Środek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. Środek masy 125. Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. 126. Dwa klocki poruszają się po płaskim stole wzdłuż tej samej

Bardziej szczegółowo

Pęd. Jan Masajada - wykłady z podstaw fizyki

Pęd. Jan Masajada - wykłady z podstaw fizyki Temat IV Pęd UKŁAD IZOLOWANY p p =0 po pewnej chwili p1 k p2 k p1 k+ p2 k=0 Działo zostało wymierzone pod kątem = 30 0 do podłoża. W pewnej chwili wystrzelono pociski o masie 30kg z prędkością początkową

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY pieczątka szkoły Kod ucznia - - Kod szkoły Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego.

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Zadania z zasad zachowania

Zadania z zasad zachowania Zadania z zasad zachowania Maciej J. Mrowiński 23 kwietnia 2010 Zadanie ZZ1 Ciało zjeżdża bez tarcia ze szczytu gładkiego wzniesienia o wysokości H. Dla jakiej wysokości h, przy której wzniesienie się

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

3.3. Energia mechaniczna. Rodzaje energii mechanicznej

3.3. Energia mechaniczna. Rodzaje energii mechanicznej 1 3.3. Energia mecaniczna. Rodzaje energii mecanicznej Dwa lub więcej oddziałującyc wzajemnie ciał nazywamy układem ciał. Siły wzajemnego oddziaływania na siebie ciał tworzącyc układ są siłami wewnętrznymi

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

30 = 1.6*a F = 2.6*18.75

30 = 1.6*a F = 2.6*18.75 Fizyka 1 SKP drugie kolokwium, cd. [Rozwiązał: Maciek K.] 1. Winda osobowa rusza w dół z przyspieszeniem 1m/s2. Ile wynosi siła nacisku człowieka o masie 90 kg na podłogę windy? Wynik podaj w N z dokładnością

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą

Bardziej szczegółowo

Pęd układu. r r r. Zderzenia oraz zasada zachowania pędu

Pęd układu. r r r. Zderzenia oraz zasada zachowania pędu Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Lista zadań nr 3 dla potoku A i B SKP oraz kierunku IŚ Wydziału IŚ PWr; rok ak. 2008/09 Praca Uwaga: Zadania w tej części rozwiązujemy

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte

Bardziej szczegółowo

Fizyka 5. Janusz Andrzejewski

Fizyka 5. Janusz Andrzejewski Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Wykład 2. podstawowe prawa i. Siły w przyrodzie, charakterystyka oddziaływań. zasady. Praca, moc, energia. 1. Jakie znamy siły???

Wykład 2. podstawowe prawa i. Siły w przyrodzie, charakterystyka oddziaływań. zasady. Praca, moc, energia. 1. Jakie znamy siły??? Wykład 2. Siły w przyrodzie, charakterystyka oddziaływań, zasady. Praca, moc, energia podstawowe prawa i Siły w przyrodzie, charakterystyka oddziaływań 1. Jakie znamy siły??? 2. Czym jest oddziaływanie??

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

ZADANIA PRACA, MOC, ENREGIA

ZADANIA PRACA, MOC, ENREGIA ZADANIA PRACA, MOC, ENREGIA Aby energia układu wzrosła musi być wykonana nad ciałem praca przez siłę zewnętrzną (spoza układu ciał) Ciało, które posiada energię jest zdolne do wykonania pracy w sensie

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Wysołek plik; Koitet Główny Olipiady Fizycznej. Andrzej Wysołek Koitet

Bardziej szczegółowo

I ZASADA DYNAMIKI. m a

I ZASADA DYNAMIKI. m a DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między

Bardziej szczegółowo

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych Zestaw 1 KINEMATYKA Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych sytuacji. Wiadomości wstępne: wektory i operacje na nich. Rodzaje ruchu,

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N. Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2011/2012 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

Dynamika punktu materialnego nieswobodnego

Dynamika punktu materialnego nieswobodnego Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo