Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
|
|
- Kacper Krzemiński
- 5 lat temu
- Przeglądów:
Transkrypt
1 zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β ( F F ) + ( β ) α, β 0, - paame wgładzaia. Ich wao dobieam p. a podsawie keium ajmiejszego błdu ediego pogoz wgasłch s z. mi s ( α, β ) gdzie s = β = Pogoz wgasłe obliczam wg wzou + = F + Pogoz zmieej Y a okes T (T>) T = +, + id. T w szczególoci dla T = + mam: + = α, β ( ( α, )) = F + ( T ) F + (wszskie koleje pogoz le a posej = F + x ) Uwaga. Poiewa = F + o F = + α ( ) = + αβ ( )
2 Waoci poczkowe F i wzaczam wg popozcji Popozcja F 0-3 Waz wol liiowej fukcji edu oszacowa a podsawie p. kilku piewszch obsewacji Współczik kieukow liiowej fukcji edu oszacowa a podsawie p. kilku piewszch obsewacji Pzkład: Wao usług fim X w kolejch kwaałach i zech piewszch kwaałach 004: 37, 4, 40, 4, 45, 4, 46, 48, 47, 53, 58, 67, 79, 85, 88 (s. zł) a) wzacz pogoz a IV kwaał 004 b) ocei jako pogoz. Pzjmiem F = = 37 Pzjmiem = = 4 37 = 4 Model Hola zasosujem dla α =0,95 i β = 0,45 kwaał F =F ( - ) 37 37,0 4,0 4 4,0 4,0 4, ,3,9 45,0 5,0 0, 4 4 4,,4 4,, 0, ,9,5 4,4 6,5 0, 6 4 4,3 0, 47,4 8,6 0, ,8,7 4,5,5 0, ,0,9 47,5 0, 0, , 0,7 49,9 8,3 0, ,7,9 47,8 6,8 0, 58 57,9 3,9 55,6 5,6 0, ,7 6, 6,8 7, 0, ,7 8,8 7,9 37,6 0, , 7,7 87,4 6,0 0, , 5,6 9,8 3,3 0, 6 93,9 suma 09,0 0,9
3 Dzielc błd ediokwadaow pzez wielko pogoz ozmam ediokwadaow błd wzgld pogoz. Dopuszczalo pogoz oceiam uediajc waoci obliczoe w osaiej kolumie (ozmam edi błd wzgld). s ediokw. bł. edi wzgl. pogoz błd wzgld 4,0 4,7% 6,6% zeeg czasow wjciow i wgładzo pezeujem a wkesie. 3
4 Ab poówa błd dla óch waoci α i β wkoajm zesawieie błdów ediokwadaowch s dla waoci α i β ze skokiem 0,05. bea alfa 0,05 0, 0,5 0, 0,5 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 0,05 0,89 0,69 0,54 0,45 0,40 0,40 0,4 0,48 0,56 0,66 0,78 0,9,05,9,34,48,63,78,9 0, 9,5 9,5 9,60 9,76 9,97 0,0 0,44 0,67 0,89,0,8,45,58,69,78,84,88,89,89 0,5 8,78 8,96 9, 9,5 9,79 0,04 0,6 0,43 0,56 0,64 0,68 0,68 0,64 0,58 0,48 0,37 0,3 0,07 9,90 0, 8,5 8,54 8,85 9,3 9,35 9,5 9,6 9,66 9,64 9,58 9,47 9,34 9,7 8,99 8,79 8,50 8,37 8,5 7,94 0,5 7,80 8, 8,39 8,60 8,73 8,79 8,77 8,69 8,57 8,4 8, 8,0 7,80 7,58 7,36 7,4 6,93 6,73 6,54 0,3 7,36 7,66 7,88 8,0 8,05 8,0 7,9 7,76 7,58 7,37 7,6 6,94 6,7 6,5 6,3 6,3 5,95 5,79 5,65 0,35 6,95 7,0 7,36 7,4 7,38 7,8 7,3 6,95 6,74 6,53 6,33 6, 5,94 5,76 5,60 5,45 5,3 5, 5,0 0,4 6,56 6,76 6,86 6,86 6,78 6,64 6,47 6,8 6,08 5,89 5,7 5,54 5,38 5,4 5, 5,0 4,9 4,84 4,78 0,45 6,0 6,36 6,4 6,37 6,6 6, 5,93 5,75 5,57 5,40 5,5 5, 4,99 4,89 4,80 4,73 4,67 4,6 4,58 0,5 5,87 5,99 6,00 5,94 5,8 5,66 5,50 5,33 5,8 5,04 4,9 4,8 4,7 4,65 4,58 4,53 4,50 4,47 4,44 0,55 5,57 5,66 5,65 5,57 5,44 5,30 5,5 5,0 4,88 4,77 4,67 4,59 4,5 4,47 4,43 4,40 4,37 4,36 4,34 0,6 5,3 5,37 5,34 5,6 5,3 5,00 4,87 4,75 4,65 4,56 4,48 4,43 4,38 4,34 4,3 4,9 4,8 4,7 4,6 0,65 5,07 5, 5,08 4,99 4,88 4,76 4,65 4,55 4,47 4,40 4,34 4,30 4,7 4,4 4, 4, 4,0 4,9 4,9 0,7 4,87 4,90 4,86 4,77 4,67 4,57 4,47 4,39 4,33 4,8 4,3 4,0 4,8 4,7 4,5 4,5 4,4 4,4 4,4 0,75 4,68 4,7 4,66 4,59 4,50 4,4 4,33 4,7 4, 4,8 4,5 4,3 4, 4, 4,0 4,0 4,0 4, 4, 0,8 4,53 4,54 4,50 4,43 4,36 4,9 4, 4,7 4,4 4, 4,09 4,08 4,07 4,07 4,08 4,08 4,09 4, 4, 0,85 4,39 4,40 4,37 4,3 4,4 4,8 4,4 4,0 4,07 4,06 4,05 4,05 4,05 4,06 4,07 4,09 4, 4,4 4,6 0,9 4,7 4,9 4,5 4,0 4,5 4, 4,07 4,05 4,03 4,03 4,03 4,04 4,05 4,07 4,09 4, 4,6 4,9 4,4 0,95 4,8 4,9 4,6 4, 4,08 4,05 4,03 4,0 4,0 4,0 4,03 4,05 4,07 4,0 4,4 4,8 4,3 4,8 4,34 Jak wida ajmiejsz błd ediokwadaowch s ozmujem dla waoci α = 0,95 i β = 0,45. Wiki e moa zilusowa gaficzie. 5
5 ,00 0,00 8,00 6,00 4,00,00 0,8 0,00 0,05 0,5 0,5 0,35 0,45 0,55 0,65 0,75 0,85 0,95 0,55 0,3 0,05 Wkes błdów ediokwadaowch s dla óch waoci α i β. 5
6 Modele ze składow pzpadkow, edem i wahaiami sezoowmi. Model Wiesa. osujem dwa modele: a) model muliplikaw, (sosujem ajczciej gd poziom waha sezoowch wokół edu oie (maleje), dokładiej gd wzgld poziom waha sezoowch jes w pzblieiu sał) b) model addw, (sosujem ajczciej gd poziom waha sezoowch wokół słabego edu lub sałego poziomu ie zmieia si, z. gd bezwzgld poziom waha sezoowch jes w pzblieiu sał) Model muliplikaw. Pogoz wzaczam w sposób sekwecj kozsajc z zech paameów wgładzaia Pogoz zmieej Y a okes T (T>) T = +, + id. Wzaczam a podsawie wzou: T ( F + ( T ) CT = ) w szczególoci pogoz biec wzaczam aspujco: ( F + ) C = gdzie - liczba faz cklu (długo cklu sezoowego) oaz F α + ( α)( F + ) (słu do wgładzoej oce C waoci zjawiska) = = ( F F ) + ( β ) β (słu do wgładzoej oce waoci pzosu edu) 6
7 C γ ( γ C (słu do wgładzoej oce F sezoowoci) = + ) α, β, γ 0, - paame wgładzaia. Ich wao dobieam p. a podsawie keium ajmiejszego błdu ediego pogoz wgasłch s z. mi s ( α, β, γ ) gdzie s = α γ. ( (, β, )) = α, β Waoci poczkowe F +, +, C, C,..., C, wzaczam aspujco - dla F pzjmuje si wao z szeegu czasowego odpowiadajc piewszej fazie dugiego cklu z: F + = + lub wao edi z piewszego cklu. - Dla pzjmuje si óic edich waoci z dugiego i piewszego cklu lub zeo. - Dla C (w poszczególch fazach I cklu) pzjmuje si iloaz waoci zmieej z I cklu w odiesieiu do ediej waoci w I cklu, C = ;...; C =... ( ) ( ) lub pzj. + Uwaga. C + C C = 7
8 Model addw. Pogoz wzaczam w sposób sekwecj kozsajc z zech paameów wgładzaia Pogoz zmieej Y a okes T (T > ) T = +, + id. Wzaczam a podsawie wzou: T = F + ( T ) + C T gdzie - liczba faz cklu (długo cklu sezoowego) oaz F = α ( C ) + ( α)( F + ) (słu do wgładzoej oce waoci ediej) = ( F F ) + ( β ) β (słu do wgładzoej oce waoci pzosu edu) C ( F ) + ( γ C = γ ) (słu do wgładzoej oce sezoowoci) α, β, γ 0, - paame wgładzaia. Dobó paameów jak dla modelu muliplikawego. Waoci poczkowe F +, +, wzaczam jak dla modelu muliplikawego. Naomias C = ( ) ( )... ;...; C = + Uwaga. C + C C = 0 8
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 3. tel.: (061)
Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele
Bardziej szczegółowoPrognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
Bardziej szczegółowoPROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
Bardziej szczegółowoPROGNOZY I SYMULACJE
Foecasg s he a of sag wha wll happe, ad he explag wh dd. Ch. Chafeld (986) PROGNOZY I SYMULACJE Kaaza Chud Laskowska kosulacje: p. 00A śoda - czwaek - soa eeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII Szeeg
Bardziej szczegółowoANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
Bardziej szczegółowoAnaliza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u
Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę
Bardziej szczegółowoPrognozowanie i symulacje
Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze
Bardziej szczegółowoAnaliza i prognozowanie szeregów czasowych
Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,
Bardziej szczegółowoMETODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH
METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej
Bardziej szczegółowoINSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
Bardziej szczegółowoMMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,
Bardziej szczegółowoZarządzanie ryzykiem. Lista 3
Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa
Bardziej szczegółowoPROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Bardziej szczegółowoPROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Bardziej szczegółowon n Weźmy f: 3 (x 1, x 2, x 3 ) (y 1, y 2, y 3 ) 3 Jeżeli zdefiniujemy funkcje pomocnicze f j : 3 (x 1, x 2, x 3 ) y j, dla j = 1,2,3, to
"Maemac ą jak Facuzi: cokolwiek im ię powie od azu pzekładają o a wój wła jęzk i wówcza aje ię o czmś zupełie im." Joha Wola Goehe Weźm : Jeżeli zdeiiujem ukcje pomocicze j : j dla j = o = dzie = Czli
Bardziej szczegółowoWytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
Bardziej szczegółowoO MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 0, s. 3 O MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI Maia Szmuksa Zawadzka Sudium Maemayki Zachodniopomoski
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
Bardziej szczegółowoZnikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym
Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα
Bardziej szczegółowo> 1), wi c na mocy kryterium porównawczego szereg sin(n n)
.65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej
Bardziej szczegółowoArytmetyka finansowa Wykład 5 Dr Wioletta Nowak
Aymeyka finansowa Wykład 5 D Wiolea Nowak Bon skabowy Insumen dłużny, emiowany pzez Skab ańswa za pośednicwem Miniseswa Finansów. Temin wykupu dzień w kóym emien dokonuje wykupu, Skab ańswa zwaca dług
Bardziej szczegółowoImplementacja metod prognozowania szeregów czasowych w pakiecie TSprediction środowiska R
D nż. Tomasz Bałomowcz Unwese Ekonomczn we Wocławu Kaeda Ekonome Infomak Implemenacja meod pognozowana szeegów czasowch w pakece TSpedcon śodowska R Seszczene. Celem akułu jes pezenacja pakeu TSpedcon
Bardziej szczegółowo. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia):
D Miszczńska, M Miszczński, KBO UŁ, Eleme programowaia damiczego Eleme PROGRAMOWANIA DYNAMICZNEGO (PD) Rozważam -eapow proces deczj: eap eap 2 eap - eap sa począkow 2 deczja x x x 2 x Sa procesu a począek
Bardziej szczegółowoINSTRUMENTY DŁUŻNE. Cena czysta, cena brudna Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE ea czysa, cea buda Rodzaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji ea buda obligacji Obligacje są oowae a giełdzie. ea giełdowa ykowa podawaa
Bardziej szczegółowoANALIZA MOŻLIWOŚCI WYKORZYSTANIA MODELU HOLTA- WINTERSA DO OCENY POPYTU NA CZĘŚCI ZAMIENNE DO POJAZDÓW ROLNICZYCH 3
Wojciech Pzsupa, Sławomi Juściński 2 Uniwese Pzodnicz w Lublinie ANALIZA MOŻLIWOŚI WYKORZYSANIA MODELU HOLA- WINERSA DO OENY POPYU NA ZĘŚI ZAMIENNE DO POJAZDÓW ROLNIZYH 3 Wsęp Współczesn nek zbu, zapewniając
Bardziej szczegółowoFizyka 3. Janusz Andrzejewski
Fizka 3 Ruch ciała Oaz się obaca Cegła się pzesuwa 6 meów Cz ważne jes o, ab opócz faku pzesunięcia się cegł uwzględnić eż obó cegł? Punk maeialn Punk maeialn-ciało, kóego ozmia i kszał w danm zagadnieniu
Bardziej szczegółowoMetody statystyczne w naukach biologicznych
Meod sascze w aukach biologiczch 6-6- Wkład: Szeregi czasowe i progozowaie Aaliza damiki iesie ze sobą ową jakość. Pozwala oa zbadać rozkład cech sasczej w czasie. Szeregi damicze przedsawiają kszałowaie
Bardziej szczegółowoDobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoPodstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Bardziej szczegółowoWAHADŁO OBERBECKA V 6 38a
Wahadło Obebecka V 6-38a WAHADŁO OBERBECKA V 6 38a Wahadło ma zasosowanie na lekcjach fizyki w klasie I i III liceum ogólnokszałcącego. Pzyząd sanowi byłę szywną uwozoną pzez uleję (1) i czey wkęcone w
Bardziej szczegółowooraz I = 50Ω, przez który przepływają kluczowane na przemian prądy I + . W przypadku, gdy Robc > RGR
Laboaoium Pzyządów Półpzewodikowych 0091019 Ćwiczeie Właściwości dyamicze diod p- 1 CEL ĆWICZENIA Celem ćwiczeia jes zapozaie się z pocesem pzełączaia diod p- oaz sposobem usalaia waości wybaych paameów,
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoOptymalna alokacja kapitału w funduszach inwestycyjnych w przypadku dwóch stóp zwrotu
Opymalna aloacja apiału w funduzach inweycyjnych w pzypadu dwóch óp zwou Leze S Zaemba Leze Pęy Wpowadzenie W niniejzej pacy podobnie ja w publiacjach [5-6] popzedzających ozpawę dooą [7] óa je aualnie
Bardziej szczegółowoSTATYSTYCZNY OPIS UKŁADU CZĄSTEK
WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowo20. Model atomu wodoru według Bohra.
Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,
Bardziej szczegółowoWSPOMAGANIE PROCESÓW DECYZYJNYCH
WSPOMAGANIE PROCESÓW DECYZYJNYCH doc. dr Beaa Pułaska-Tura Zakład Badań Operacjch Zarządzaia, pokój B505 e-mail: urab@mail.wz.uw.edu.pl el: (22) 55 34 44 Mgr Pior Ja Gadecki e-mail: ifo@pgadecki.pl www:
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
Bardziej szczegółowoLaboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach
Laboaoium Półpzewodniki, Dielekyki i Magneyki Ćwiczenie n 10 Pomiay czasu życia nośników w półpzewodnikach I. Zagadnienia do pzygoowania: 1. Pojęcia: nośniki mniejszościowe i większościowe, ównowagowe
Bardziej szczegółowoδ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
Bardziej szczegółowoRozdział VIII KINETYKA NASYCANIA POWIERZCHNI. 1. Wstęp
83 Rozdział VIII KINETYKA NASYCANIA POWIERZCHNI 1. Wsęp W akcie wykonywania zewnęznyc oconnyc wasw ynku, jak i konsewacji isniejącyc deali budowli zabykowyc zacodzi częso konieczność oceny sopnia peneacji
Bardziej szczegółowoDYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Bardziej szczegółowoZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU
ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU KRZYSZTOF JURCZYK, MARCIN BARAN, WOJCIECH WO NIAK Sreszczeie W prac zaprezeowao model krókoermiowego progozowaia
Bardziej szczegółowoBADANIE DYNAMICZNEGO TŁUMIKA DRGA
Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie
Bardziej szczegółowoMateriały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
Bardziej szczegółowoZwiązek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
Bardziej szczegółowoGRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Bardziej szczegółowoSygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Bardziej szczegółowoX, K, +, - przestrzeń wektorowa
Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi
Bardziej szczegółowoZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
Bardziej szczegółowoBeata Leska Zespół Szkół im. M. Konarskiego w Warszawie
www.awas.e Publikacje auczycieli eaa Leska Zespół Szkół i. M. Koaskiego w Waszawie O liczbach i wieloiaach eoulliego Paca opublikowaa w Ieeowy Sewisie Oświaowy AWANS.NET O LICZACH I WIELOMIANACH ERNOULLIEGO
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
Bardziej szczegółowoZadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoModele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Bardziej szczegółowoD:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Bardziej szczegółowoWYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoGranica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych
Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si
Bardziej szczegółowoREZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO
REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO Leszek CHYBOWSKI, Gzegoz NICEWICZ Pzedsiębioswo Amaoskie Pee Döhle, Hambug, Niemcy Isyu Nauk Podsawowych
Bardziej szczegółowoRównania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka
Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania
Bardziej szczegółowoK N. y y n. ) k=1,2,...k. x k. k x nk. x = 1.1
. Wbó zmiech objaśiającch.. Ozaczeia Będziem a azie ozważać mode jedoówaiow. smbo K opis iczba zmiech objaśiającch iczba obsewacji (iczba watości ażdej ze zmiech, wstępującch w modeu) zmiea objaśiaa. Jej
Bardziej szczegółowoKLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoLIST EMISYJNY nr 3 /2014 Ministra Finansów
LIST EMISYJNY n /0 Minista Finansów z dnia stycznia 0. w spawie emisji kótkookesowych oszczędnościowych obligacji skabowych o opocentowaniu stałym ofeowanych w sieci spzedaży detalicznej Na podstawie at.
Bardziej szczegółowoAnaliza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoGEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Bardziej szczegółowoĆWICZENIE 5. Badanie przekaźnikowych układów sterowania
ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowoOddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowo4.1. Środek ciężkości i środek masy
4 Śode ciężości i śode as Rozpatz uład putów ateialch o asach (,,, ), a tóe działają sił ciężości (s 4) Niech położeie tch putów względe putu odiesieia O oeślają weto wodzące, ja a suu Wiadoo, że sił ciężości
Bardziej szczegółowoJohann Wolfgang Goethe Def.
"Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Bardziej szczegółowoPrzepięcia i sieci odciążające
Pzepięcia i sieci odciążające Cel ćwiczenia: apoznanie sudenów z zjawiskami pzepięć komuacyjnych na yysoach i sposobami ochony elemenów półpzewodnikowych, oaz poznanie sposobów ochony elemenów w pełni
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe
PROGNOZOWANIE I SYMULACJE - zadana powórzenowe Zadana I. Na podsawe danych z la 88- zbudowano model: y = + 3, 5 s = szuk, R =,3 opsujcy lczb sprzedawanych arówek w yscach szuk w pewnej frme. Wyznaczy prognoz
Bardziej szczegółowoZestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
Bardziej szczegółowoGrzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powóka z fizyki - dla uczniów gimnazjów, kózy chcą wiedzieć o co zeba, a nawe więcej, - dla uczniów liceów, kózy chcą powózyć o co zeba, aby zozumieć więcej, - dla wszyskich, kózy chcą znać
Bardziej szczegółowoKRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI
KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI WOJCIECH WO NIAK, JERZY MIKULIK Sreszczeie W pracy zaprezeowao
Bardziej szczegółowoEgzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Bardziej szczegółowo( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Bardziej szczegółowoZmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Bardziej szczegółowoOCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
Bardziej szczegółowo2014-06-03. Empiryczne modele stóp zwrotu z portfeli inwestycyjnych. Modele, metody inwestowania oraz ocena działalności funduszu
Empiyczne modele sóp zwou z pofeli inwesycyjnych Wojciech Gabowski Wydział Nauk Ekonomicznych Uniwesye Waszawski Rynki Finansowe 2013/14 Modele, meody inwesowania oaz ocena działalności funduszu -Meody
Bardziej szczegółowoRodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
Bardziej szczegółowooznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim
WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni
Bardziej szczegółowoEkonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Bardziej szczegółowoWykład 19 Zagadnienie dwóch ciał. naj- mniej dwóch musi dwóch i wi cej trudny. szybkim jedynie ograniczaj c si do fizyki nierelatywistycznej dwóch
Wykład 9 Zagadnienie dwóch ciał. ealisyczny pzykład oddziałujcego układu fizycznego wyaga obecnoci, co najniej dwóch ciał, w najposszy pzypadku, dwóch punków aeialnych. W doychczasowych naszych ozwaaniach
Bardziej szczegółowoPrzejścia optyczne w cząsteczkach
-4-8 Pzejścia optycze w cząsteczkac Pzybliżeie Boa Oppeeimea acek.szczytko@fuw.edu.pl ttp://www.fuw.edu.pl/~szczytko/t ttp://www.sciececatoosplus.com/ Podziękowaia za pomoc w pzygotowaiu zajęć: Pof. d
Bardziej szczegółowoOcena dopasowania modelu do danych empirycznych
Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi
Bardziej szczegółowoCzas trwania obligacji (duration)
Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji
Bardziej szczegółowo