Beata Leska Zespół Szkół im. M. Konarskiego w Warszawie
|
|
- Karol Sosnowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Publikacje auczycieli eaa Leska Zespół Szkół i. M. Koaskiego w Waszawie O liczbach i wieloiaach eoulliego Paca opublikowaa w Ieeowy Sewisie Oświaowy AWANS.NET
2 O LICZACH I WIELOMIANACH ERNOULLIEGO Za wócę liczb i wieloiaów eouuliego uważa się powszechie Jakuba eoulliego (654-75). Do hisoii aeayki wpisał się o jako jede z ośiu uczoych o y say azwisku. Największe zasługi Jakub eoulli położył w eoii achuku óżiczkowego oaz achuku pawdopodobieńswa. adając suy posaci: ,,N + wyzaczył liczby, kóe dziś zwae są liczbai eoulliego ([5],s.9-94). Z wyliczeie ych liczb związae było ówież okeśleie wieloiaów, kóe J. L. Raabe w 85 oku azwał wieloiaai eoulliego. Należy zazaczyć, że sa eoulli zajował się jedyie wieloiaai okeśloyi a zbioze liczb aualych. Dla dowolej zieej zeczywisej wieloiay eoulliego jako piewszy ozważał L. Eule. Rezulay swojej pacy a ea liczb i wieloiaów Jakub eoulli zebał w książce As Cojecadi opublikowaej pośieie w 7 oku ([6],s. 7). LICZY ERNOULLIEGO Zauważy, że Rozpazy fukcję e!...!! f, R ( ) e......!!!!!! Powyższa ówość zachodzi dla. W pukcie = wyażeie!...!...! a waość, a ułaek a gaicę ówą. e ()......! Iloaz () daje się pzedsawić w posaci szeegu c a ocy wiedzeia:
3 TWIERDZENIE: Jeżeli szeegi a oaz b ają dodaie poieie zbieżości i szeeg b w pukcie = jes óży od zea, o isieje szeeg c o dodai poieiu zbieżości aki, że w pewy ooczeiu puku = zachodzi ożsaość: a Ze względów hisoyczych ozaczyy współczyiki c!. Ozyujey wówczas: Skąd e b! !!!......!!!, a poado wobec defiicji iloczyu Couchy ego dwóch szeegów ([4].s.57) ay...!!!!!!!!!!!! c......!!!!!! Na ocy wiedzeia o ideyczości szeegów ([],s.84) ozyujey, że, a akże asępujący układ ówań!!...!!!!!!!, dla =,,,...! Poóży obie soy powyższych ówań pzez (+)!. Ozyujey wówczas:!!!!!!!..., dla =,,,... ()!!!!! Zauważy, że współczyiki pzy kolejych ają posać sybolu Newoa. W związku z y układ ówań () wygląda asępująco..., dla =,,... () Ławo udowodić eodą idukcji zupełej, że układ () jes ozaczoy dla =,,... Pzepowadzając achuki ozyujey z () waości kolejych liczb, o zaczy:
4 = =- = 6 = 4 =- 5 = 6 = 4 7 = 8 =- 9 = 5 = 66 = 69 =- 7 = 4 = = 67 6 =- 5 7 = = = 764 = Powyższe liczby oszą azwę liczb eoulliego. Moża adieić, że a liczik -cyfowy, a iaowikie jes liczba Naoias a iaowik ówy 6, zaś liczik jes 7-cyfowy. Jedą z ciekawszych własości liczb eoulliego jes własość =, dla =,5,7,9... Liczby eoulliego posłużyły do okeśleia wieloiaów eoulliego. WIELOMIANY ERNOULLIEGO Defiicja: Wieloiaai eoulliego azyway fukcje okeśloe dla =,,,... wzoai: R. (4), Wieloiay e oża ozyać jako współczyiki ozwiięcia w szeeg według poęg asępującej fukcji e f, e, R, R. (5) Twiedzeie: Fukcja okeśloa wzoe (5) jes fukcją woząca dla wieloiaów eoulliego, z. e. e! Twiedzeie o pozosawiay bez dowodu.
5 Wykozysując ozyae wcześiej waości liczb eoulliego oaz wzó (4) dosajey od azu posać kilku piewszych wieloiaów eoulliego: 4, 4,, 6,,... okeśloych dla R. WŁASNOŚCI WIELOMIANÓW ERNOULLIEGO. ()=, dla =,,.... ()= - (), dla =,,.... (-)=(-) (), dla =,,...(własość dopełieia) 4. ()= - s s, dla,=,, (+)- ()= -, dla =,, ()= ()=, dla =,, (+)=, dla =,,... Z ysu hisoyczego wiadoo, że powsaie liczb i wieloiaów eoulliego związae jes z wyliczeie suy = k k,, N. Zajdźy związek poiędzy ą suą a liczbai i wieloiaai eoulliego.. W y celu zauważy, że dla - ego wieloiau eoulliego okeśloego dla R, fukcja piewoa a posać: F R,,,,...,
6 Isoie F ()=. Rozpazy całkę d y, gdzie,y są dowole i usaloe a czas ozuowaia. Całka aka a ses, bowie () jes fukcją ciągłą dla R, więc y badziej a pzedziale <,y>. W yśl podsawowego wiedzeia achuku całkowego ([],s.6) oaz posaci fukcji piewoej dla -ego wieloiau eoulliego ozyujey y d y, Jeżeli w osaiej całce w iejsce y położyy + o powyższy wzó pzyjuje posać d, R, =,,,... Sąd, a akże a ocy własości 5, ozyujey: d. (6) Rozważy asępie suę,, N oaz połóży we wzoze (6) w iejsce R zieą. N Ozyujey wedy d d d d... Sąd ozyujey, że d,,. N Kozysając z własości ozyujey żąday związek,, N. Pzykład: Wyzacz suę kwadaów dwudziesu piewszych liczb aualych.
7 Z wcześiejszych ozważań ay, że ()= - + oaz =. W ezulacie 87. Wieloiay eoulliego zajdują ówież zasosowaie we wzoze suacyjy Eulea ([4], s.56) oaz do ozyaia ozwiązaia ówaia óżicowego zędu piewszego. ibliogafia [] G. ejje, A. Edej, Wysszije ascjedjeyje fukcji, Nauka, Moskwa 97. [] G.M. Ficheholz, Rachuek óżiczkowy i całkowy,. II, PWN, Waszawa 985. [] A.O. Gelfod, Isczisljeije kojeczych azosjej, Moskwa 959. [4] K. Kopp, Szeegi ieskończoe, PWN, Waszawa 956. [5] Pocze wielkich aeayków, pod edakcją pof. d hab. W. Kysickiego, Nasza Księgaia, Waszawa 989. [6] E.T. Whiake, G.N. Waso, Kus aalizy współczesej,. I, PWN, Waszawa 976. Publikacja dodaa do Achiwu Ieeowego Sewisu Oświaowego AWANS.NET 5 kwieia 4.
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
n n Weźmy f: 3 (x 1, x 2, x 3 ) (y 1, y 2, y 3 ) 3 Jeżeli zdefiniujemy funkcje pomocnicze f j : 3 (x 1, x 2, x 3 ) y j, dla j = 1,2,3, to
"Maemac ą jak Facuzi: cokolwiek im ię powie od azu pzekładają o a wój wła jęzk i wówcza aje ię o czmś zupełie im." Joha Wola Goehe Weźm : Jeżeli zdeiiujem ukcje pomocicze j : j dla j = o = dzie = Czli
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u
Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( )
Rówaia óżiczkowe zwyczaje Rówaie postaci: Wykład Wpowadzeie dy x dx ( x y ( x) ) = f () Gdzie f ( x y ) jest fukcją dwóch zmieych okeśloą i ciągłą w pewym obszaze płaskim D azywamy ówaiem óżiczkowym zwyczajym
Wytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
Przejmowanie ciepła przy kondensacji pary
d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały
Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości
oraz I = 50Ω, przez który przepływają kluczowane na przemian prądy I + . W przypadku, gdy Robc > RGR
Laboaoium Pzyządów Półpzewodikowych 0091019 Ćwiczeie Właściwości dyamicze diod p- 1 CEL ĆWICZENIA Celem ćwiczeia jes zapozaie się z pocesem pzełączaia diod p- oaz sposobem usalaia waości wybaych paameów,
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
5. Zasada indukcji matematycznej. Dowody indukcyjne.
Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.
Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili, to ówiy o encie
Podstawowe zasady udzielania i spłaty kredytów
Podstawowe zasady udzielaia i spłaty kedytów Klasyfikacja kedytów. Wg czasu: kótkoteiowe (do oku), śedioteiowe ( do 5 lat), długoteiowe (powyżej 5 lat).. Wg pzediotu kedytowaia: iwestycyje, obotowe. 3.
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
Analiza i prognozowanie szeregów czasowych
Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
INSTRUMENTY DŁUŻNE. Cena czysta, cena brudna Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE ea czysa, cea buda Rodzaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji ea buda obligacji Obligacje są oowae a giełdzie. ea giełdowa ykowa podawaa
Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r
Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Zarządzanie ryzykiem. Lista 3
Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa
BADANIE DYNAMICZNEGO TŁUMIKA DRGA
Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO
REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO Leszek CHYBOWSKI, Gzegoz NICEWICZ Pzedsiębioswo Amaoskie Pee Döhle, Hambug, Niemcy Isyu Nauk Podsawowych
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.
MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
INSTRUMENTY DŁUŻNE. Duracja jako funkcja stopy procentowej Duracja skończonego ciągu płatności Immunizacja portfela aktywów
INSTRUMENTY ŁUŻNE aja jao fja opy poeowej aja ońzoego iąg płaośi Iizaja pofela aywów aja iąg pzepływów pzy apializaji iągłej oza opa ' ; aja jao fja ] [ ' T VR T E T E e d d d d aja jao fja apializaja
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
Zmiana wartości pieniądza
Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
20. Model atomu wodoru według Bohra.
Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Aproksymacja. Plan wykładu. 1. Problem aproksymacji, normy, rodzaje aproksymacji. 2. Aproksymacja średniokwadratowa
Aproksyacja Pla wykładu 1. Prole aproksyacji, ory, rodzaje aproksyacji. Aproksyacja średiokwadratowa a) w ) w c) w d) w azie azie azie azie jedoiaów wieloiaów ortogoalych fukcji trygooetryczych fukcji
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Optymalna alokacja kapitału w funduszach inwestycyjnych w przypadku dwóch stóp zwrotu
Opymalna aloacja apiału w funduzach inweycyjnych w pzypadu dwóch óp zwou Leze S Zaemba Leze Pęy Wpowadzenie W niniejzej pacy podobnie ja w publiacjach [5-6] popzedzających ozpawę dooą [7] óa je aualnie
METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH
METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
4. MODELE ZALEŻNE OD ZDARZEŃ
4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI. Tadeusz Gerstenkorn. 1. Wstęp. 2. Rozkład G. Pólyi
UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI Tadeusz Gesteko Emeytoway pofeso Uiwesytetu Łódzkiego ISSN 1644-6739 e-issn 2449-9765 DOI: 10.15611/sps.2015.13.09 Steszczeie: Rozkład pawdopodobieństwa
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P
WIADOMOŚCI WSTĘPNE Odsetki powstają w wyiku odjęcia od kwoty teaźiejszej K kwoty początkowej K 0, zate Z = K K 0. Z ekooiczego puktu widzeia właściciel kapitału K 0 otzyuje odsetki jako zapłatę od baku
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej
Energia kinetyczna układu punktów materialnych
74 egia ietycza ułau putów ateialych egią ietyczą putu ateialego o asie, pouszającego się z pęością, azyway połowę iloczyu asy putu i waatu jego pęości: Dla ułau putów ateialych o asach pouszających się
Obligacja i jej cena wewnętrzna
Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel
Równania dynamiki maszyn prądu stałego w jednostkach względnych Jako podstawę analizy przyjmijmy równania obwodu twornika:
óaa ya aszy pą sałego jeosach zgęych Jao posaę aazy pzyjjy óaa obo oa: obo zbzea: ( ) e ( ) aość sły eeoooyczej yającej z oboó a: e oe yozoy aszye: M e Bazo ygoy jes zaps óań jeosach zgęych. Jao eośc oesea
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ś Ę Ś Ą Ł Ę Ę Ę Ą ć Ę Ę ź ź Ń Ń Ę Ń Ń ź ź Ą ć Ą ć Ę Ą Ń Ń Ą Ę Ę ć Ą Ę ź Ą ć ć Ęć ć Ń ć ć ć ć ć Ś ć Ą ć ć ć Ń Ę Ś Ę Ę Ę ć Ę ć ć Ł ć Ń Ń Ęć Ę ź ć Ą Ę ź ć Ę Ę ź Ę Ą Ę Ą ć ź ź Ę ź Ę Ń ć ź ć ź Ę Ń Ę Ł Ę Ę ć
500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -
Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć
Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011
Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Egzami z Aaliz Matematczej Każde zadaie ależ ozwiązać a oddzielej, podpisaej katce! Zbadać, w jakich puktach jest óżiczkowala fukcja f (, ( + = +, (, (,), (, = (,) Zaleźć ajmiejszą i ajwiększą watość fukcji
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a
WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że
(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE
4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi
Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć
ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł