PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
|
|
- Miłosz Urbaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska
2 PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia. Wersja w Excelu Obliczeia, wkres Projek (wersja Word oraz Excel) przesłają Pańswo w ermiie do r. Usa obroa projeku a 4 ćwiczeiach ( r.) ieprzsąpieie do obro ozacza 0 puków z projeku. Na obroę proszę dosarczć: wdrukowaą wersję Worda oraz wersję Excela w formie elekroiczej 2
3 Eap progozowaia. Sformułowaie problemu progosczego określeie m. i. progozowaego obieku, zasięgu progoz, progozowaego zjawiska, zmiech charakerzującch zjawisko, jedosek pomiaru, kaegorii zmiech, pu zmiech; 2. Gromadzeie oraz przewarzaie dach; 3. Wbór meod progozowaia wbraie a podsawie przesłaek progosczch odpowiediego modelu progozowaia; 4. Wzaczeie progoz; 5. Ocea dopuszczalości oraz rafości progoz; 6. Werfikacja progoz moiorig - ależ śledzić a bieżąco fakczą rafość sporządzach progoz. 3
4 Eap progozowaia. Sformułowaie problemu progosczego p: Określeie zjawiska p.: sprzedaż produku, kórego będzie doczła progoza Cel budow progoz p.: przgoowaie podsaw do podjęcia deczji o rozbudowie firm, zaplaowaie wielkości produkcji. Horzo progoz p.: a 2 okres w przód 4
5 3. Wbór meod progozowaia Meod progozowaia krókoermiowego sał poziom red sezoowość Model aiw, Modele średiej armeczej, Model Browa Model Hola Modele aalicze Model wskaźików sezoowości Model Wiersa
6 Eap progozowaia 4. Wzaczeie progoz Wzaczeie progoz przebiega zgodie ze schemaem jak rówież meodologią wbraej meod progozowaia. 6
7 Zadaie Ilość wsłek iewielkiej firm kurierskiej, w kolejch miesiącach 2009 roku kszałowała się asępująco: miesiące Ilość wsłek ) Swórz wkres. Dokoaj dekompozcji szeregu czasowego. Wzacz wielkość współczika zmieości. 2) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod aiwej. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 7
8 Szereg czasow - zesawieie warości zmiech cech badaej według krerium czasu, gdzie badaa jes warość cech w kolejej jedosce czasu. laa Sprzedaż produku X (w s. sz.) 200 0, , , , , , , , ,0 8
9 Składowe szeregów czasowch W szeregach czasowch wróżia się dwie składowe: ) składowa ssemacza edecja rozwojowa (red) długookresowa skłoość do jedokierukowch zmia, sał/przecię poziom zmieej progozowaej, składowa okresowa (periodcza) wahaia cklicze lub sezoowe 2) składowa przpadkowa (składik losow, wahaia przpadkowe) Y Y Czas 9 Czas
10 Y wahaia losowe sał poziom Y wahaia losowe red Czas Czas Y wahaia sezoowe sał poziom Y wahaia sezoowe red Czas 0 Czas
11 Mieriki jakości modelu progosczego Odchleie sadardowe (składika reszowego lub z obserwacji) 0,5 2 m s 0,5 2 s - liczba obserwacji w szeregu czasowm m - liczba zmiech objaśiającch (ie uwzględiając wrazu wolego) Współczik wrazisości (zmieości)
12 Zadaie Ilość wsłek iewielkiej firm kurierskiej, w kolejch miesiącach 2009 roku kszałowała się asępująco: miesiące Ilość wsłek ) Swórz wkres. Dokoaj dekompozcji szeregu czasowego. Wzacz wielkość współczika zmieości. 2) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod aiwej. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 2
13 Model aiw Model aiw - zakłada, że progozowaa warość w asępm okresie będzie kszałowała się a m samm poziomie co w obecm okresie, prz założeiu ie wsępowaia zmia jakościowch w badam zjawisku. Model e może mieć zasosowaie w przpadku ie wsępowaia wahań przpadkowch (sał poziom badaego zjawiska) w szeregu czasowm. - = progoza zjawiska a okres - wielkość badaego zjawiska w okresie - UWAGA! progoz moża wkoać lko a jede okres w przód 3
14 Zadaie Ilość wsłek iewielkiej firm kurierskiej, w kolejch miesiącach 2009 roku kszałowała się asępująco: miesiące Ilość wsłek ) Swórz wkres. Dokoaj dekompozcji szeregu czasowego. Wzacz wielkość współczika zmieości. 2) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod aiwej. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 4
15 Mieriki rafości progoz Błęd progoz ex pos ) Bezwzględ błąd progoz ex pos - wielkość badaego zjawiska w okresie, - progoza warości zmieej a okres, 2) Względ błąd progoz ex pos 3) Średi kwadraow (sadardow) błąd progoz ex pos liczba obserwacji w szeregu czasowm Iformuje o przecięm odchleiu progoz od warości rzeczwisch w całm przedziale werfikacji. 5
16 6 4) Średi błąd progoz ex pos 5) Średi bezwzględ (absolu) błąd progoz ex pos e e 0 i d 6) Średi względ błąd progoz ex pos 00
17 Zadaie 2 Wdajość badaego magazu kompleacji, wrażoa jako średia ilość jedosek paleowch skompleowach w ciągu godzi w poszczególch miesiącach 2009 roku wosiła: miesiące Wielkość kompleacji [jp/h] ) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod: a) średiej armeczej ruchomej 3-elemeowej, b) średiej armeczej ruchomej 5-elemeowej, c) średiej armeczej ważoej 3-elemeowej, wkorzsując wagi 0,2 ; 0,3 ; 0,5 d) średiej armeczej ważoej 5-elemeowej, wkorzsując wagi 0, ; 0,5 ; 0,2 ; 0,25 ; 0,3. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 7
18 Modele średiej armeczej Wróżia się asępujące modele średiej armeczej: Średia armecza prosa Średia armecza ruchoma Średia armecza ważoa 8
19 Średia armecza ruchoma - cech charakerscze: prose obliczeia, wbór liczb okresów jes arbiral - im miejsza liczba okresów m szbsza odpowiedź (bardziej odzwierciedla zachodzące zmia), wszskim uśrediam dam przpisuję aką samą wagę, większa liczba okresów siliej wgładza dae, lecz skraca szereg czasow. = k i ik progoza a mome lub okres jes średią armeczą z k osaich obserwacji w szeregu 9 i k - progoza zjawiska a okres - wielkość badaego zjawiska w okresie i - liczba elemeów średiej ruchomej, sała wgładzaia
20 Średia armecza ruchoma 3-elemeowa / PRZYKŁAD miesiące Sprzedaż (sz.) Sczeń 05 Lu 2 Marzec 03 Kwiecień 99 Maj 03 Czerwiec 0 Lipiec 07 Sierpień 05 Wrzesień 03 Paździerik 09 Lisopad 0 grudzień? Średia ruchoma 3-elemeowa ( )/3=06,67 ( )/3=04,67 ( )/3=0,67 ( )/3=0,00 ( )/3=03,67 ( )/3=04,33 ( )/3=05,00 ( )/3=05,67 ( )/3=04, =? = k i ik =04,33 sz.
21 Średia armecza ważoa cech charakerscze: prose obliczeia, ajwiększe zaczeie mają ajświeższe dae (mają większą wagę), uwzględia wsępujące red, ale ie wzacza ich liczbowo. i k = ik i w i 2 k - progoza zjawiska a okres - wielkość badaego zjawiska w okresie i - liczba elemeów średiej ruchomej, sała wgładzaia - waga zmieej progozowaej w okresie i
22 Średia armecza ważoa 3-elemeowa/ PRZYKŁAD miesiące Sprzedaż (sz.) Sczeń 05 Lu 2 Marzec 03 Kwiecień 99 Maj 03 Czerwiec ? Lipiec 07 Sierpień 05 Wrzesień 03 Paździerik 09 Lisopad 0 grudzień? = 2 I waga 0,2; II waga 0,3; III waga 0,5 03 0,2 090,3 0 0,5 0,2 0,3 0,5 UWAGA: Suma wag zawsze wosi 22 =03,8 sz.
23 Zadaie 2 Wdajość badaego magazu kompleacji, wrażoa jako średia ilość jedosek paleowch skompleowach w ciągu godzi w poszczególch miesiącach 2009 roku wosiła: miesiące Wielkość kompleacji [jp/h] ) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod: a) średiej armeczej ruchomej 3-elemeowej, b) średiej armeczej ruchomej 5-elemeowej, c) średiej armeczej ważoej 3-elemeowej, wkorzsując wagi 0,2 ; 0,3 ; 0,5 d) średiej armeczej ważoej 5-elemeowej, wkorzsując wagi 0, ; 0,5 ; 0,2 ; 0,25 ; 0,3. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 23
24 Mieriki rafości progoz Błęd progoz ex pos ) Bezwzględ błąd progoz ex pos - wielkość badaego zjawiska w okresie, - progoza warości zmieej a okres, 2) Względ błąd progoz ex pos 3) Średi kwadraow (sadardow) błąd progoz ex pos liczba obserwacji w szeregu czasowm Iformuje o przecięm odchleiu progoz od warości rzeczwisch w całm przedziale werfikacji. 24
25 25 4) Średi błąd progoz ex pos 5) Średi bezwzględ (absolu) błąd progoz ex pos e e 0 i d 6) Średi względ błąd progoz ex pos 00
26 Dziękuję za uwagę 26
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)
Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele
WSPOMAGANIE PROCESÓW DECYZYJNYCH
WSPOMAGANIE PROCESÓW DECYZYJNYCH doc. dr Beaa Pułaska-Tura Zakład Badań Operacjch Zarządzaia, pokój B505 e-mail: urab@mail.wz.uw.edu.pl el: (22) 55 34 44 Mgr Pior Ja Gadecki e-mail: ifo@pgadecki.pl www:
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
Prognozowanie i symulacje
Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze
KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych.
1 PROGNOZOWANIE Kaedra Ssemów Logiscznch mgr inż. Marna Malak marna.malak@wsl.com.pl Panel TABLICE 1 2 3 DEFINICJA PROGNOZY Prognozowanie? Przewidwanie 4 DEFINICJA PRZEWIDYWANIA Przewidwanie wnioskowanie
Instytut Logistyki i Magazynowania
Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Metody statystyczne w naukach biologicznych
Meod sascze w aukach biologiczch 6-6- Wkład: Szeregi czasowe i progozowaie Aaliza damiki iesie ze sobą ową jakość. Pozwala oa zbadać rozkład cech sasczej w czasie. Szeregi damicze przedsawiają kszałowaie
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Prognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Ocena dopasowania modelu do danych empirycznych
Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia):
D Miszczńska, M Miszczński, KBO UŁ, Eleme programowaia damiczego Eleme PROGRAMOWANIA DYNAMICZNEGO (PD) Rozważam -eapow proces deczj: eap eap 2 eap - eap sa począkow 2 deczja x x x 2 x Sa procesu a począek
Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych
Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe
Analiza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Dane modelu - parametry
Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
MODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
DEA podstawowe modele
Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Statystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
PROGNOZY I SYMULACJE
Forecasing is he ar of saing wha will happen, and hen explaining wh i didn. Ch. Chafield (986) PROGNOZY I SYMULACJE Kaarzna Chud Laskowska konsulacje: p. 400A środa -4 czwarek -4 srona inerneowa: hp://kc.sd.prz.edu.pl/
Histogram: Dystrybuanta:
Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI
KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI WOJCIECH WO NIAK, JERZY MIKULIK Sreszczeie W pracy zaprezeowao
Erlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2.
Rozład Erlaga Zajdziem rozład czasów oczeiwaia a -e zdarzeie. Łącz czas oczeiwaia a zdarzeń da jes przez: M. Przbcień Rachue prawdopodobieńswa i sasa ( (- gdzie E ; λ λ exp λ Podobie zajdujem: E ( ; E(
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU
ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU KRZYSZTOF JURCZYK, MARCIN BARAN, WOJCIECH WO NIAK Sreszczeie W prac zaprezeowao model krókoermiowego progozowaia
Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:
Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
2017 r. STOPA BEZROBOCIA r. STOPA BEZROBOCIA
2017 r. STOPA BEZROBOCIA GUS dokonał korekty stopy bezrobocia za okres od grudnia 2016 r. do sierpnia 2017 r., wynikającej na podstawie badań prowadzonych przez przedsiębiorstwa według stanu na 31 grudnia
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
ODCZYT STANU WODY NA RZECE DRWĘCY mierzone dla posterunku Nowe Miasto Lubawskie
598 3 grudnia 2010r. - 239 597 2 grudzień 2010r. - 236 596 1 grudzień 2010r. - 238 595 30 listopad 2010r. - 242 594 29 listopad 2010t. - 265 593 28 listopad 2010r. - 256 592 27 listopad 2010r. - 251 591
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej
Zasady budowania prognoz ekonometrycznych
Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
ORGANIZATOR SPORTU DZIECI I MŁODZIEŻY W ŚRODOWISKU WIEJSKIM
Imię i nazwisko PLAN ZADAŃ NA MIESIĄC styczeń 2015 1. Zorganizowanie imprez (podać planowany termin, miejsce, liczbę osób) 2. Prowadzenie zajęć pozalekcyjnych, treningów dla dzieci i młodzieży 3. Współpraca
1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
INWESTYCJE MATERIALNE
OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Podstawy zarządzania finansami przedsiębiorstwa
Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych
Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW
Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW 1. Wstęp Pomiarem jest procesem pozawczm, któr umożliwia odwzorowaie właściwości fizczch obiektów w dziedziie liczb. Sam proces pomiarow jest ciągiem czości
INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego
Zbigiew Tarapaa Symulacyja meoda doboru opymalych paramerów w progosyczych modelach wygładzaia wyładiczego Wydział Cybereyi Wojsowej Aademii Techiczej w Warszawie Sreszczeie W aryule zaprezeowao symulacyją
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Metody Ilościowe w Socjologii
Meod Ilościowe w Socjologii wkład 5, 6, 7 PROGNOZOWANIE I SYMULACJE dr inż. Maciej Woln AGENDA I. Prognozowanie i smulacje podsawowe informacje II. Prognozowanie szeregów czasowch III. Dekompozcja szeregu,
POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,
POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.
Październik Data Dzień tygodnia Szczęśliwy numerek [Wybierz inny miesiąc]
Szczęśliwe numerki 2014/2015 Wybierz miesiąc: Wrzesień Październik Listopad Grudzień Styczeń Luty Marzec Kwiecień Maj Czerwiec Wrzesień 10 wrzesień 2014 Środa 16 11 wrzesień 2014 Czwartek 17 12 wrzesień
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
Wolumen - część II Budynki Urzędu Gminy Kulesze Kościelne i Ochotniczej Straży Pożarnej Grodzkie Nowe w grupie taryfowej G
Wolumen opracowany na podstawie faktur z ostatnich 12 miesięcy Tabela nr 1 Styczeń 2016 G11 2 całodobowo 1,661 2 Zużycie energii 1,661 Tabela nr 2 Luty 2016 G11 2 całodobowo 1,459 2 Zużycie energii 1,459
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
ROK 2007 Sprawozdanie o rynku pracy - - - - - - - - - - Styczeń 2007 - - - - - - - - - -
ROK Sprawozdanie o rynku pracy - - - - - - - - - - Styczeń - - - - - - - - - - - ukończenia / lat - powyżej roku życia - powyżej roku życia - powyżej roku życia - - - - - - - - - - Luty - - - - - - - -
MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez
MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,
IV SEKTOR - HARMONOGRAM WYWOZU ODPADÓW WIELKOGABARYTOWYCH Z BUDYNKÓW WIELORODZINNYCH NA 2015 ROK
STYCZEŃ 1 2 3 4 5 6 7 8 9 10 11 12 13 Żydowce 14 Śmierdnica,Zdunowo 15 16 17 18 19 20 21 22 23 24 25 26 27 Żydowce 28 Śmierdnica,Zdunowo 29 30 31 LUTY 1 2 3 4 5 6 7 8 9 10 Żydowce 11 Śmierdnica,Zdunowo
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia