PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych."

Transkrypt

1 PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska

2 PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia. Wersja w Excelu Obliczeia, wkres Projek (wersja Word oraz Excel) przesłają Pańswo w ermiie podam w pliku ermi przesłaia projeków dla poszczególch grup. Usa obroa projeku a 3 ćwiczeiach ieprzsąpieie do obro ozacza 0 puków z projeku. Na obroę proszę dosarczć: wdrukowaą wersję Worda oraz Wersję Excela w formie elekroiczej 2

3 DEFINICJA PROGNOZY Progozowaie? Przewidwaie 3

4 DEFINICJA PROGNOZY Przewidwaie wioskowaie o zdarzeiach iezach a podsawie zdarzeń zach (p. przewidwaie ieracjoale, czli prorocwa i wróżb) PROGNOZOWANIE opare a aukowch podsawach przewidwaia kszałowaia się zjawisk i procesów w przszłości. Określeie aukowe podsaw ozacza w m przpadku, iż prz progozowaiu korzsa się z dorobku auki j. z meod maemaczch, sasczch oraz ogólej meodologii posępowaia w procesie progozowaia. 4

5 Eap progozowaia. Sformułowaie problemu progosczego określeie m. i. progozowaego obieku, zasięgu progoz, progozowaego zjawiska, zmiech charakerzującch zjawisko, jedosek pomiaru, kaegorii zmiech, pu zmiech; 2. Gromadzeie oraz przewarzaie dach; 3. Wbór meod progozowaia wbraie a podsawie przesłaek progosczch odpowiediego modelu progozowaia; 4. Wzaczeie progoz; 5. Ocea dopuszczalości oraz rafości progoz; 6. Werfikacja progoz moiorig - ależ śledzić a bieżąco fakczą rafość sporządzach progoz. 5

6 Meod progozowaia krókoermiowego sał poziom red sezoowość Model aiw, Modele średiej armeczej, Model Browa Model Hola Modele aalicze Model wskaźików sezoowości Model Wiersa 6

7 Zadaie Ilość wsłek iewielkiej firm kurierskiej, w kolejch miesiącach 2009 roku kszałowała się asępująco: miesiące Ilość wsłek ) Swórz wkres. Dokoaj dekompozcji szeregu czasowego. Wzacz wielkość współczika zmieości. 2) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod aiwej. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 7

8 Szereg czasow - zesawieie warości zmiech cech badaej według krerium czasu, gdzie badaa jes warość cech w kolejej jedosce czasu. laa Sprzedaż produku X (w s. sz.) 200 0, , , , , , , , ,0 8

9 Składowe szeregów czasowch W szeregach czasowch wróżia się dwie składowe: ) składowa ssemacza edecja rozwojowa (red) długookresowa skłoość do jedokierukowch zmia, sał/przecię poziom zmieej progozowaej, składowa okresowa (periodcza) wahaia cklicze lub sezoowe 2) składowa przpadkowa (składik losow, wahaia przpadkowe) Y Y Czas 9 Czas

10 Y wahaia losowe sał poziom Y wahaia losowe red Czas Czas Y wahaia sezoowe sał poziom Y wahaia sezoowe red Czas 0 Czas

11 Mieriki jakości modelu progosczego Odchleie sadardowe (składika reszowego lub z obserwacji) 0,5 2 m s 0,5 2 s - liczba obserwacji w szeregu czasowm m - liczba zmiech objaśiającch (ie uwzględiając wrazu wolego) Współczik wrazisości (zmieości)

12 Model aiw Model aiw - zakłada, że progozowaa warość w asępm okresie będzie kszałowała się a m samm poziomie co w obecm okresie, prz założeiu ie wsępowaia zmia jakościowch w badam zjawisku. Model e może mieć zasosowaie w przpadku ie wsępowaia wahań przpadkowch (sał poziom badaego zjawiska) w szeregu czasowm. - = progoza zjawiska a okres - wielkość badaego zjawiska w okresie - UWAGA! progoz moża wkoać lko a jede okres w przód 2

13 Mieriki rafości progoz Błęd progoz ex pos ) Bezwzględ błąd progoz ex pos - wielkość badaego zjawiska w okresie, - progoza warości zmieej a okres, 2) Względ błąd progoz ex pos 3) Średi kwadraow (sadardow) błąd progoz ex pos liczba obserwacji w szeregu czasowm Iformuje o przecięm odchleiu progoz od warości rzeczwisch w całm przedziale werfikacji. 3

14 4 4) Średi błąd progoz ex pos 5) Średi bezwzględ (absolu) błąd progoz ex pos e e 0 i d 6) Średi względ błąd progoz ex pos 00

15 Zadaie 2 Wdajość badaego magazu kompleacji, wrażoa jako średia ilość jedosek paleowch skompleowach w ciągu godzi w poszczególch miesiącach 2009 roku wosiła: miesiące Wielkość kompleacji [jp/h] ) Zbuduj model progoscz oraz wzacz progozę a sczeń 200 roku korzsając z meod: a) średiej armeczej ruchomej 3-elemeowej, b) średiej armeczej ruchomej 5-elemeowej, c) średiej armeczej ważoej 3-elemeowej, wkorzsując wagi 0,2 ; 0,3 ; 0,5 d) średiej armeczej ważoej 5-elemeowej, wkorzsując wagi 0, ; 0,5 ; 0,2 ; 0,25 ; 0,3. 3) Oceń rafość progoz ex pos wkorzsując średi kwadraow (sadardow) błąd progoz ex pos oraz średi względ błąd progoz ex pos. 5

16 Modele średiej armeczej Wróżia się asępujące modele średiej armeczej: Średia armecza prosa Średia armecza ruchoma Średia armecza ważoa 6

17 Średia armecza ruchoma - cech charakerscze: prose obliczeia, wbór liczb okresów jes arbiral - im miejsza liczba okresów m szbsza odpowiedź (bardziej odzwierciedla zachodzące zmia), wszskim uśrediam dam przpisuję aką samą wagę, większa liczba okresów siliej wgładza dae, lecz skraca szereg czasow. = k i ik progoza a mome lub okres jes średią armeczą z k osaich obserwacji w szeregu 7 i k - progoza zjawiska a okres - wielkość badaego zjawiska w okresie i - liczba elemeów średiej ruchomej, sała wgładzaia

18 Średia armecza ruchoma 3-elemeowa / PRZYKŁAD miesiące Sprzedaż (sz.) Sczeń 05 Lu 2 Marzec 03 Kwiecień 99 Maj 03 Czerwiec 0 Lipiec 07 Sierpień 05 Wrzesień 03 Paździerik 09 Lisopad 0 grudzień? Średia ruchoma 3-elemeowa ( )/3=06,67 ( )/3=04,67 ( )/3=0,67 ( )/3=0,00 ( )/3=03,67 ( )/3=04,33 ( )/3=05,00 ( )/3=05,67 ( )/3=04, =? = k i ik =04,33 sz.

19 Średia armecza ważoa cech charakerscze: prose obliczeia, ajwiększe zaczeie mają ajświeższe dae (mają większą wagę), uwzględia wsępujące red, ale ie wzacza ich liczbowo. i k = ik i w i 9 k - progoza zjawiska a okres - wielkość badaego zjawiska w okresie i - liczba elemeów średiej ruchomej, sała wgładzaia - waga zmieej progozowaej w okresie i

20 Średia armecza ważoa 3-elemeowa/ PRZYKŁAD miesiące Sprzedaż (sz.) Sczeń 05 Lu 2 Marzec 03 Kwiecień 99 Maj 03 Czerwiec ? Lipiec 07 Sierpień 05 Wrzesień 03 Paździerik 09 Lisopad 0 grudzień? = 2 I waga 0,2; II waga 0,3; III waga 0,5 03 0,2 090,3 0 0,5 0,2 0,3 0,5 UWAGA: Suma wag zawsze wosi 20 =03,8 sz.

21 Dziękuję za uwagę 2

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych. PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)

PROGNOZOWANIE. Ćwiczenia 3.  tel.: (061) Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele

Bardziej szczegółowo

WSPOMAGANIE PROCESÓW DECYZYJNYCH

WSPOMAGANIE PROCESÓW DECYZYJNYCH WSPOMAGANIE PROCESÓW DECYZYJNYCH doc. dr Beaa Pułaska-Tura Zakład Badań Operacjch Zarządzaia, pokój B505 e-mail: urab@mail.wz.uw.edu.pl el: (22) 55 34 44 Mgr Pior Ja Gadecki e-mail: ifo@pgadecki.pl www:

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości

Bardziej szczegółowo

PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych.

PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych. 1 PROGNOZOWANIE Kaedra Ssemów Logiscznch mgr inż. Marna Malak marna.malak@wsl.com.pl Panel TABLICE 1 2 3 DEFINICJA PROGNOZY Prognozowanie? Przewidwanie 4 DEFINICJA PRZEWIDYWANIA Przewidwanie wnioskowanie

Bardziej szczegółowo

Instytut Logistyki i Magazynowania

Instytut Logistyki i Magazynowania Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Prognozowanie na podstawie szeregów czasowych.

Prognozowanie na podstawie szeregów czasowych. Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa

Bardziej szczegółowo

Metody statystyczne w naukach biologicznych

Metody statystyczne w naukach biologicznych Meod sascze w aukach biologiczch 6-6- Wkład: Szeregi czasowe i progozowaie Aaliza damiki iesie ze sobą ową jakość. Pozwala oa zbadać rozkład cech sasczej w czasie. Szeregi damicze przedsawiają kszałowaie

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Ocena dopasowania modelu do danych empirycznych

Ocena dopasowania modelu do danych empirycznych Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi

Bardziej szczegółowo

MODEL TENDENCJI ROZWOJOWEJ

MODEL TENDENCJI ROZWOJOWEJ MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe

Bardziej szczegółowo

Analiza szeregów czasowych uwagi dodatkowe

Analiza szeregów czasowych uwagi dodatkowe Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.

Bardziej szczegółowo

. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia):

. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia): D Miszczńska, M Miszczński, KBO UŁ, Eleme programowaia damiczego Eleme PROGRAMOWANIA DYNAMICZNEGO (PD) Rozważam -eapow proces deczj: eap eap 2 eap - eap sa począkow 2 deczja x x x 2 x Sa procesu a począek

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny. OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

DEA podstawowe modele

DEA podstawowe modele Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi

Bardziej szczegółowo

Dane modelu - parametry

Dane modelu - parametry Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3

Bardziej szczegółowo

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM. Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE Forecasing is he ar of saing wha will happen, and hen explaining wh i didn. Ch. Chafield (986) PROGNOZY I SYMULACJE Kaarzna Chud Laskowska konsulacje: p. 400A środa -4 czwarek -4 srona inerneowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t

Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI

KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI WOJCIECH WO NIAK, JERZY MIKULIK Sreszczeie W pracy zaprezeowao

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

Erlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2.

Erlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2. Rozład Erlaga Zajdziem rozład czasów oczeiwaia a -e zdarzeie. Łącz czas oczeiwaia a zdarzeń da jes przez: M. Przbcień Rachue prawdopodobieńswa i sasa ( (- gdzie E ; λ λ exp λ Podobie zajdujem: E ( ; E(

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

2017 r. STOPA BEZROBOCIA r. STOPA BEZROBOCIA

2017 r. STOPA BEZROBOCIA r. STOPA BEZROBOCIA 2017 r. STOPA BEZROBOCIA GUS dokonał korekty stopy bezrobocia za okres od grudnia 2016 r. do sierpnia 2017 r., wynikającej na podstawie badań prowadzonych przez przedsiębiorstwa według stanu na 31 grudnia

Bardziej szczegółowo

ODCZYT STANU WODY NA RZECE DRWĘCY mierzone dla posterunku Nowe Miasto Lubawskie

ODCZYT STANU WODY NA RZECE DRWĘCY mierzone dla posterunku Nowe Miasto Lubawskie 598 3 grudnia 2010r. - 239 597 2 grudzień 2010r. - 236 596 1 grudzień 2010r. - 238 595 30 listopad 2010r. - 242 594 29 listopad 2010t. - 265 593 28 listopad 2010r. - 256 592 27 listopad 2010r. - 251 591

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.

Bardziej szczegółowo

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru: Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Meod Ilościowe w Socjologii wkład 5, 6, 7 PROGNOZOWANIE I SYMULACJE dr inż. Maciej Woln AGENDA I. Prognozowanie i smulacje podsawowe informacje II. Prognozowanie szeregów czasowch III. Dekompozcja szeregu,

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU

ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU KRZYSZTOF JURCZYK, MARCIN BARAN, WOJCIECH WO NIAK Sreszczeie W prac zaprezeowao model krókoermiowego progozowaia

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub

Bardziej szczegółowo

ORGANIZATOR SPORTU DZIECI I MŁODZIEŻY W ŚRODOWISKU WIEJSKIM

ORGANIZATOR SPORTU DZIECI I MŁODZIEŻY W ŚRODOWISKU WIEJSKIM Imię i nazwisko PLAN ZADAŃ NA MIESIĄC styczeń 2015 1. Zorganizowanie imprez (podać planowany termin, miejsce, liczbę osób) 2. Prowadzenie zajęć pozalekcyjnych, treningów dla dzieci i młodzieży 3. Współpraca

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 5

Stanisław Cichocki Natalia Nehrebecka. Wykład 5 Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW 1. Wstęp Pomiarem jest procesem pozawczm, któr umożliwia odwzorowaie właściwości fizczch obiektów w dziedziie liczb. Sam proces pomiarow jest ciągiem czości

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.

ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2. Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA 1 ANALIZA, PROGNOZOWANIE I SYMULACJA AUTOR: mgr inż. MARTYNA KUPCZYK DANE KONTAKTOWE 2 mgr inż. Martyna Kupczyk Katedra Systemów Logistycznych Pokój nr 115A (I piętro) e-mail: martyna.kupczyk@wsl.com.pl

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Wolumen - część II Budynki Urzędu Gminy Kulesze Kościelne i Ochotniczej Straży Pożarnej Grodzkie Nowe w grupie taryfowej G

Wolumen - część II Budynki Urzędu Gminy Kulesze Kościelne i Ochotniczej Straży Pożarnej Grodzkie Nowe w grupie taryfowej G Wolumen opracowany na podstawie faktur z ostatnich 12 miesięcy Tabela nr 1 Styczeń 2016 G11 2 całodobowo 1,661 2 Zużycie energii 1,661 Tabela nr 2 Luty 2016 G11 2 całodobowo 1,459 2 Zużycie energii 1,459

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Październik Data Dzień tygodnia Szczęśliwy numerek [Wybierz inny miesiąc]

Październik Data Dzień tygodnia Szczęśliwy numerek [Wybierz inny miesiąc] Szczęśliwe numerki 2014/2015 Wybierz miesiąc: Wrzesień Październik Listopad Grudzień Styczeń Luty Marzec Kwiecień Maj Czerwiec Wrzesień 10 wrzesień 2014 Środa 16 11 wrzesień 2014 Czwartek 17 12 wrzesień

Bardziej szczegółowo

ROK 2007 Sprawozdanie o rynku pracy - - - - - - - - - - Styczeń 2007 - - - - - - - - - -

ROK 2007 Sprawozdanie o rynku pracy - - - - - - - - - - Styczeń 2007 - - - - - - - - - - ROK Sprawozdanie o rynku pracy - - - - - - - - - - Styczeń - - - - - - - - - - - ukończenia / lat - powyżej roku życia - powyżej roku życia - powyżej roku życia - - - - - - - - - - Luty - - - - - - - -

Bardziej szczegółowo

IV SEKTOR - HARMONOGRAM WYWOZU ODPADÓW WIELKOGABARYTOWYCH Z BUDYNKÓW WIELORODZINNYCH NA 2015 ROK

IV SEKTOR - HARMONOGRAM WYWOZU ODPADÓW WIELKOGABARYTOWYCH Z BUDYNKÓW WIELORODZINNYCH NA 2015 ROK STYCZEŃ 1 2 3 4 5 6 7 8 9 10 11 12 13 Żydowce 14 Śmierdnica,Zdunowo 15 16 17 18 19 20 21 22 23 24 25 26 27 Żydowce 28 Śmierdnica,Zdunowo 29 30 31 LUTY 1 2 3 4 5 6 7 8 9 10 Żydowce 11 Śmierdnica,Zdunowo

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Gospodarka lokalna Założenia a rzeczywistość

Gospodarka lokalna Założenia a rzeczywistość PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU Nr 644 Gospodarka lokala Założeia a rzeczywisość 1992 Marek Obr~balski, Marek Walesiak Akademia Ekoomicza we Wrocławiu O PEWNEJ METODZIE WYBORU WYKONAWCY

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego

Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego Zbigiew Tarapaa Symulacyja meoda doboru opymalych paramerów w progosyczych modelach wygładzaia wyładiczego Wydział Cybereyi Wojsowej Aademii Techiczej w Warszawie Sreszczeie W aryule zaprezeowao symulacyją

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

PROGNOZOWANIE DOCHODÓW ZE SPRZEDAŻY TYGODNIKÓW LOKALNYCH WYBRANE PODEJŚCIA

PROGNOZOWANIE DOCHODÓW ZE SPRZEDAŻY TYGODNIKÓW LOKALNYCH WYBRANE PODEJŚCIA Progozowaie dochodów ze sprzedaży tygodików lokalych... STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 2 97 SEBASTIAN GNAT Uiwersytet Szczeciński PROGNOZOWANIE DOCHODÓW ZE SPRZEDAŻY TYGODNIKÓW

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji

Bardziej szczegółowo