n n Weźmy f: 3 (x 1, x 2, x 3 ) (y 1, y 2, y 3 ) 3 Jeżeli zdefiniujemy funkcje pomocnicze f j : 3 (x 1, x 2, x 3 ) y j, dla j = 1,2,3, to
|
|
- Janusz Pietrzyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 "Maemac ą jak Facuzi: cokolwiek im ię powie od azu pzekładają o a wój wła jęzk i wówcza aje ię o czmś zupełie im." Joha Wola Goehe Weźm : Jeżeli zdeiiujem ukcje pomocicze j : j dla j = o = dzie = Czli wacz pzeaalizowad ukcję : De. Niech cią =. Mówim że cią ma aicę = oz. = ε > : < ε Np. Wkaż że : Tw. WKW zbieżości ciąu i : i i
2 Np. Oblicz Odp.: e De. Niech Ooczeiem puku o pomieiu > azwam K = * : < + Sąiedzwem puku o pomieiu > azwam S = K \{ + De. Mówim że ukcja : ma w pukcie aicę oz. de. Cauche o ε > δ > K δ : < ε de. Heieo > S : = = zauważm że dla jeżeli pzjmiem wpółzęde bieuowe = = coα = iα o = + = = + coα + iα jeżeli + coα + iα ie zależ od wbou α π Np. Oblicz. e
3 . Odp.: ukcja ie ma aic w pukcie. i co i co co i co co i co
4 i co i De. Niech : Gaicami ieowami ukcji w pukcie azwam każdą z aic - oaz -. Tw. o aicach ieowach Jeżeli iieje = oaz > + : = φ [ lub > + : = φ ] o iieje aica ieowaa - = [ lub - = ] Np. Oblicz aice ieowae dla w.
5 Wioek: Jeżeli aice ieowae ukcji w pukcie ie ą ówe o ukcja ie ma aic w m pukcie. De. Mówim że ukcja : je ciąła w pukcie D = Mówim że ukcja : je ciąła w zbioze X D je ciąła w każdm pukcie zbiou X Wioek: Suma ilocz iloaz złożeie ukcja odwoa o ile iieje z ukcji ciąłch ą ciąłe w zbioach w kóch ą okeśloe. Np. Zbadaj ciąłośd. je ciąła w \{}. je ciąła w \{: = =-}
6 De. Niech :. pochodą cząkową wzlędem zmieej ukcji w pukcie azwam liczbę oz. pochodą cząkową wzlędem zmieej ukcji w pukcie azwam liczbę pochodą cząkową wzlędem zmieej ukcji w pukcie oz. azwam liczbę oz. Wioek: Wzkie właości pochodej ukcji jedej zmieej ouje ię do pochodch cząkowch ukcji wielu zmiech. Np. Oblicz pochode cząkowe.. ac l
7 +. = + = dla = dla = = = = = = = + = ie iieje De. Niech : ma wzkie pochode cząkowe w Różiczką ukcji w pukcie azwam odwzoowaie czli d = i= d : i i i= i i Np. Napiz óżiczkę w pukcie - ukcji = l+ d - = 5 5 = + = + = 5 = 5
8 De. Mówim że : je óżiczkowala w iieje d oaz d = dzie = je pzoem zupełm ukcji dla pzou Tw. Jeżeli : ma wzkie pochode cząkowe ciąłe w o je óżiczkowala w Np. Zbadaj óżiczkowalośd w pukcie ukcji = = = = co α + co αi α coαi α = = = czli ie je ciąła aaloiczie dla dla = coα = iα
9 zbadajm cz mimo o ukcja je óżiczkowala d + = + + ukcja ie je óżiczkowala = + = + = + = Iepeacja eomecza óżiczki Fukcja : je óżiczkowala w iieje powiezchia cza do wkeu = w pukcie Tw. Jeżeli : je óżiczkowala w o powiezchia cza do wkeu = w pukcie ma ówaie - = d dzie Δ= Np. Napiz ówaie płazczz czej do = l w pukcie = = = = : z = : z =
10 Tw. Jeżeli i : m dla i = m mają wzkie pochode cząkowe w pukcie =... o m oaz : ma wzkie pochode cząkowe w pukcie = o: Np. Oblicz pochode cząkowe ukcji złożoej dla = l = = De. Gadieem w pukcie ukcji : kóa ma wzkie pochode cząkowe w pukcie azwam weko De. Niech : v v =. Pochodą kieukową ukcji w pukcie w kieuku wekoa v azwam liczbę... j i j i j i m l 6 l 6 v v v '
11 De. -ą pochodą cząkową pochodą cząkową -eo zędu z ukcji : w pukcie azwam pochode cząkowe z dowolej - pochodej cząkowej ukcji w pukcie. Np. Oblicz pochodą kieukową ukcji w pukcie w kieuku wekoa v v Tw. Jeżeli : k je óżiczkowala w pukcie v E k i v = o Np. Oblicz pochodą kieukową ukcji z wekoa v = = l z = = z = l z w pukcie = w kieuku = v v v = = + 5 5
12 Np. Wlicz pochode cząkowe zędu z ukcji dla > Tw. Schwaza Jeżeli ukcja : k ma pochode cząkowe zędu -eo ciąłe w o o waośd pochodch cząkowch miezach zędu ie zależ od kolejości wliczaia kolejch pochodch cząkowch. aci 8 8
13 Np. ; ip. De. Jeżeli : ma pochode cząkowe -eo zędu w pukcie o ą óżiczką zupełą ukcji w pukcie azwam óżiczkę z - óżiczki ukcji w pukcie oz. d Tw. Jeżeli : ma pochode cząkowe zędu -eo ciąłe w o d = Np. Oblicz d dla = d = + + = 6 = = 6 = 6 = = 6 + d Tw. Taloa Jeżeli ukcja : ma w pewm ooczeiu K puku ciąłe pochode cząkowe do zędu + włączie o K θ : = + d! + d! + + d! + + d + +! +θ - eza Laae a =
14 Np. Napiz wzó Taloa dla ukcji = w pukcie = = = = = = = = = d = + = + d d = 6 d = = De. Mówim że ukcja : ma makimum albo miimum lokale w > S : < > Tw. WK iieia ekemum Jeżeli : ma w ooczeiu puku ciąłe pochode cząkowe wzkie oaz ma w ekemum lokale o i = : i = De. Puk w kóm ukcja : może mied ekemum azwam pukem acjoam Np. Wzacz puk acjoae ukcji z = + z + + 6z + 5 = + + = = z = z = + 6 = = 6 = z = 8 pukem acjoam je puk P = 6 8
15 Tw. WW iieia ekemum Jeżeli : ma w ooczeiu puku ciąłe pochode cząkowe -o zędu i d = dla dowoleo oaz > < o ma w miimum makimum lokale. Np. >. Wzacz ekema ukcji = + D = = = puk acjoa: = = = = = =. wzacz ekema ukcji = D = = = = = = = = = = = puk acjoae: w pukcie ma miimum = = = > <
16 = = dla = ma ekemum dla = ie ma ekemum dla = : = : = : = ie ma ekemum = = = = = w pukcie ie = w pukcie = w pukcie dla = : = = makimum = w pukcie ma. wlicz waośd ajwiękzą i ajmiejzą ukcji = w zbioze D = * : + + zukam puków acjoach wewąz zbiou D: = = puk acjoa: zukam puków acjoach a bzeu zbiou D: + = = ± dla = = puk acjoae: -
17 dla = = puk acjoae: - - = -=8 =8 -=- =- waośd ajwiękza 8 waośd ajmiejza -
Johann Wolfgang Goethe Def.
"Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad
Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:
: R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Egzami z Aaliz Matematczej Każde zadaie ależ ozwiązać a oddzielej, podpisaej katce! Zbadać, w jakich puktach jest óżiczkowala fukcja f (, ( + = +, (, (,), (, = (,) Zaleźć ajmiejszą i ajwiększą watość fukcji
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( )
Rówaia óżiczkowe zwyczaje Rówaie postaci: Wykład Wpowadzeie dy x dx ( x y ( x) ) = f () Gdzie f ( x y ) jest fukcją dwóch zmieych okeśloą i ciągłą w pewym obszaze płaskim D azywamy ówaiem óżiczkowym zwyczajym
Funkcje tworz ce skrypt do zada«
Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś
ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć
Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć
Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
+ ln = + ln n + 1 ln(n)
"Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów
ó ś ś ń ó ń ść ż ć ń Ę Ę ć óń ś ó Ź ś Ń ŚĆ ś ń ó ś ś ó ń Ę ś ś ó ó ó ń ś ż ś ś Ś ó Ś ó ó ń ń ź ń ó ń ó ż ś Ó ó Ą ś Ę ń ś ś ó ó ń ó ś Ó ó ń ś Ę Ę ń Ę ń Ę ó ń ń ó ż ó Ę ó ń Ś ń ń ń ź ś Ę ó ó ó Ę ć Ą Ę ń
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
STATYSTYCZNY OPIS UKŁADU CZĄSTEK
WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)
RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia
ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x
ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a
WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych
Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne
Fukcje trygoometrycze Fukcje trygoometry cze - powtórzeie Tożsamości trygoometry cze 3 podstawowe tożsamości trygoometrycze metoda uzasadiaia tożsamości trygoometryczych Fukcje trygoometry cze sumy i różicy
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Beata Leska Zespół Szkół im. M. Konarskiego w Warszawie
www.awas.e Publikacje auczycieli eaa Leska Zespół Szkół i. M. Koaskiego w Waszawie O liczbach i wieloiaach eoulliego Paca opublikowaa w Ieeowy Sewisie Oświaowy AWANS.NET O LICZACH I WIELOMIANACH ERNOULLIEGO
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez
Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................
III. LICZBY ZESPOLONE
Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć
ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć
δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Wyznaczyć prędkości punktów A i B
Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w
Wykład 8. Prawo Hooke a
Wykład 8 Pawo Hooke a Pod działaiem apężeń ciało tałe zmieia wó kztałt. Z doświadczeń wyika, że eżeli wielkość apężeia et mieza od pewe watości, zwae gaicą pężytości, to odkztałceie et odwacale i po uuięciu
ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Estymatory nieobciążone o minimalnej wariancji
Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)
Narzędzia matematyczne potrzebne w kursie Reakcje w ciele stałym
Narzędzia maemacze porzebe w kursie Reakcje w ciele sałm Pochoda fukcji jedej zmieej Defiicja, własości rachukowe, wzór a pochodą fukcji złożoej, szereg Talora, pochode fukcji elemearch. Pochoda fukcji
ć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści
ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji
ń Ę ń Ś Ą Ń ż Ą ż ż ż ż ż ć ć ż ż ż ż ż ń ź ż ż ż ć ż ć ż ż ż ż ż ń Ą ż ń ń ż ń Ń Ę ż ź ń ż ć ć ń ż ż ż ń ż ż ż ć ć ń Ń ń ż ż Ń ć Ę ń ć ć ż ż ż ż ń Ę ń ż Ź Ś ż ć ć ż Ś ż ż ć ń ń ż ć ć ż Óż ń ń ż ż ć ć
ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź
Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
ć Ł Ą Ź Ś Ó Ó ŚĆ Ó Ż ż Ó Ó Ć Ó Ś Ą Ą Ź Ś Ś Ź Ź Ó ż Ó Ź Ś ż Ę ć ż Ę Ź ÓŻ Ś ż Ą Ó Ą Ś ż ź Ó ż ć Ż Ź Ó Ó ć ż ć ć ż ć Ą Ż Ż Ó ć Ź Ż ć Ę ć Ó Ż ć Ś ć ć Ó Ó Ą ć ć Ść ć ć Ż ż ż Ó Ż ż ć Ż ć ć ć ć ć Ó Ż ć Ę ć Ó
Przykład obliczeń cieplnych nagrzewnicy powietrza Materiały do zajęć z wymiany ciepła v. 0.83
dr i. Paeł Kędzierki dr i. Michał Srzezeki gr i. Aa Koerka Przykład obliczeń cieplych agrzeicy poierza Maeriały do zajęć z yiay ciepła v. 0.83 ' " V " α α δ ' V l d ' d d z δ k g D Ry.. Rozkład eperaury