Analiza i prognozowanie szeregów czasowych
|
|
- Jakub Urban
- 8 lat temu
- Przeglądów:
Transkrypt
1 Analiza i pognozowanie szeegów czasowych
2 Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,, 2,..., n. Czas Poziom zjawiska y y 2 y2 : : n yn 2
3 Pzykłady szeegów czasowych 3
4 Zwolnienia lekaskie iczba dni niepzepacowanych z powodu chooby wśód pacujących na achunek własny w laach (w ys.; dane kwaalne) 28 95_ _4 94_ _4 95_ 22 9_4 93_ 94_ 95_2 20 9_ 92_ 93_2 94_2 94_3 95_3 8 9_2 92_2 93_3 6 9_3 92_3 4 9_ 9_2 9_3 9_4 92_ 92_2 92_3 92_4 93_ 93_2 93_3 93_4 94_ 94_2 94_3 94_4 95_ 95_2 95_3 95_4 4
5 Skup mleka Wielkość skupu mleka w Polsce w laach (w mln l; dane miesięczne) 5
6 Zużycie enegii elekycznej Zużycie enegii elekycznej w Łodzi w laach (w MW; dane dzienne) 6
7 oy pasażeskie iczba pasażeów międzynaodowej linii loniczej w laach (w ys.; dane miesięczne) 7
8 Huowa spzedaż poduku B Wielkość huowej spzedaży poduku B (dane dzienne ze 80 kolejnych dni). 8
9 Ceny sea Ceny skupu sea w laach (w zł/kg; dane miesięczne) 9
10 Ceny wołowiny Ceny wołowiny-żywca w laach (w zł/kg; dane miesięczne) 0
11 Aykuł piekaniczy Spzedaż aykułu w dniach w. ś. czw. p. sob. pon. w. ś. czw. p. sob. pon. w. ś. czw. p. sob niedz. niedz. 0 w. ś. c z w. p. s o b. n ie d z. p o n. w. ś. c z w. p. s o b. n ie d z. p o n. w. ś. c z w. p. s o b.
12 Aykuł piekaniczy Spzedaż aykułu w dniach
13 Aykuł piekaniczy Spzedaż aykułu w dniach
14 Modele szeegu czasowego 4
15 Model z endem, bez sezonowości Model zawieający end (bez wahań sezonowych) ( ) z y f Oznaczenia: y poziom zjawiska w jednosce czasu f() funkcja endu z składnik losowy 5
16 Modele z endem i sezonowością Model z sezonowością - addyywny ( ) g ( ) z i y f Model z sezonowością muliplikaywny y f ( ) g ( ) z i Oznaczenia: gi() funkcja chaakeyzująca wahania sezonowe Uwaga. Sosuje się akże modele mieszane 6
17 Pzykład hu. spzedaży pod. B Model dopasowany pzez pof. A. Sokołowskiego dla spzedaży poduku B; źódło: Bˆ 0670,58 6,3 0,27 2 0,49B 0,20B 5 0,27 B 6 0,9B ,94RMIN 933,98RPUS 2 7
18 Pzykład hu. spzedaży pod. B cd. Wykesy szeegu piewonego i waości eoeycznych wyznaczonych wg modelu dla spzedaży poduku B (źódło: 8
19 Ocena modelu 9
20 Ocena modelu Ocena modelu opiea się na miaach dopasowania waości wyznaczonych pzez model do danych empiycznych. Czas Poziom zjawiska y Waość z modelu ŷ y 2 y2 2 : : ŷ ŷ n yn ŷ n 20
21 błąd: (eo) Miay dopasowania modelu E y yˆ y ˆ y błąd pocenowy: PE 00 % y (pecenage eo) błąd śedni: ME ( y ) yˆ (mean eo) śedni błąd pocenowy: (mean pecenage eo) n MPE n n n PE 2
22 Miay dopasowania modelu cd. śedni błąd bezwzględny: (mean absolue eo) MAE n n y yˆ śedni bezwzględny błąd pocenowy: (mean absolue pecenage eo) n MAPE n y y yˆ 00% błąd śedniokwadaowy: MSE ( y ) yˆ (mean squae eo) n n 2 22
23 Pzykład hu. spzedaży pod. B Poównanie pognoz w pzykładzie o huowej spzedaży poduku B ( Błędy pognozy ex pos 23
24 Modele wygładzania wykładniczego Modele wygładzania (wyównywania) wykładniczego należą do modeli adapacyjnych. Nie ma w nich założeń o posaci analiycznej mechanizmu opisującego zjawisko, a paamey modeli dososowują się do zmian w czasie. Tzy podsawowe modele: - dla danych sacjonanych (bez endu i wahań sezonowych) - dla danych z endem - dla danych z endem i sezonowością 24
25 Posy model wygładzania wykładniczego Posy model wygładzania wykładniczego (Bowna) dla zjawisk bez endu i bez wahań sezonowych. Poceduę wyównywania wykładniczego można ozpocząć od pzyjmując ˆ ˆ α α ˆ ( 0; ) ( α) 2, 3,, n sała wygładzania Równanie na pognozę ˆ h α ˆ K ( α) 2, 3,, n K Pognoza wyznaczona na piewszy okes jes akże pognozą na okesy dalsze. 25
26 26 Uwaga Waość wyównaną można pzedsawić w posaci: ( ) ( ) ( ) n, 3, 2, α α α α α α ˆ 2 2 K Ŷ jes śednią ważoną obsewacji z piewonego szeegu czasowego z wagami malejącymi w posępie geomeycznym pzy pzechodzeniu do coaz saszych obsewacji.
27 27 Model Hola Model Hola dla zjawisk z endem i bez wahań sezonowych: ( )( ) ( ) ( ) h ht T β β T T ˆ α α gdzie: poziom zjawiska w czasie, α sała do wygładzania poziomu zjawiska, T end w czasie, β sała do wygładzania zmian endu; ( ) 0, β α, Waości saowe ( ) ( ) / 2 / T T
28 28 Model Hola z endem gasnącym Model Hola zmodyfikowany pzez dodanie czynnika ψ łumiącego end: ( )( ) ( ) ( ) ( ) h h T ψ ψ ψ ψ ψt β β T ψt α α K 3 2 ˆ gdzie: ψ sała łumiąca end, ( ) 0,, ψ β α, Waości saowe jak w modelu bez sałej ψ.
29 29 Model Hola-Winesa z endem gasnącym (/2) Model Hola ozszezony o wahania sezonowe powadzi do modelu Hola-Winesa ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) h h h S T ψ ψ ψ ψ S γ ψt γ S ψt β β T ψt α S α K 3 2 ˆ gdzie: S sezonowy komponen w czasie γ sała wygładzania wahań sezonowych okes wahań sezonowych
30 30 Model Hola-Winesa z endem gasnącym (2/2) Waości saowe ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) S T T i i i K K K K i, 2,...
31 3
32 32
33 33
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas
Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH
METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej
Zarządzanie ryzykiem. Lista 3
Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa
Arytmetyka finansowa Wykład 5 Dr Wioletta Nowak
Aymeyka finansowa Wykład 5 D Wiolea Nowak Bon skabowy Insumen dłużny, emiowany pzez Skab ańswa za pośednicwem Miniseswa Finansów. Temin wykupu dzień w kóym emien dokonuje wykupu, Skab ańswa zwaca dług
BADANIE DYNAMICZNEGO TŁUMIKA DRGA
Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie
PROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki
Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Teat ćwiczenia: ZASTOSOWANIE RACHUNKU WYRÓWNAWCZEGO
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
O MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 0, s. 3 O MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI Maia Szmuksa Zawadzka Sudium Maemayki Zachodniopomoski
N a l e W y u n i k a ć d ł u g o t r w a ł e g o k o n t a k t u p o l a k i e r o w a n y c h p o w i e r z c h n i z w y s o k i m i t e m p e r a
J L G 3 6 6 P A W I L O N O G R O D O W Y J L G 3 6 6 I N S T R U K C J A M O N T A V U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p a w i l o n u o g
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
MODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
WYKORZYSTANIE MODELI SIGN RCA DO PROGNOZY
Joanna Góka Wyższa Szkoła Infomayki i Ekonomii WP w Olszynie WYKORZYSANIE MODELI SIGN RCA DO PROGNOZY WAROŚCI NARAŻONEJ NA RYZYKO Do kwanyfikowania yzyka ynkowego używana jes częso waość naażona na yzyko
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powóka z fizyki - dla uczniów gimnazjów, kózy chcą wiedzieć o co zeba, a nawe więcej, - dla uczniów liceów, kózy chcą powózyć o co zeba, aby zozumieć więcej, - dla wszyskich, kózy chcą znać
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Wybrane problemy prognozowania cen produktów rolnych
V EUROPEJSKI KONGRES MENADŻERÓW AGROBIZNESU, ŁYSOMICE 14.11.218 Wybrane problemy prognozowania cen produków rolnych Cezary Klimkowski INSTYTUT EKONOMIKI ROLNICTWA I GOSPODARKI ŻYWNOŚCIOWEJ PAŃSTWOWY INSTYTUT
Prognozowanie krótkoterminowe w procesie planowania zasobów
Analiza danych Data mining Sterowanie jakością Analityka przez Internet Prognozowanie krótkoterminowe w procesie planowania zasobów Marzena Imiłkowski,, GE Money Bank Andrzej Sokołowski, StatSoft Polska
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Implementacja metod prognozowania szeregów czasowych w pakiecie TSprediction środowiska R
D nż. Tomasz Bałomowcz Unwese Ekonomczn we Wocławu Kaeda Ekonome Infomak Implemenacja meod pognozowana szeegów czasowch w pakece TSpedcon śodowska R Seszczene. Celem akułu jes pezenacja pakeu TSpedcon
Rodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
Transport masy, pędu energii. Prawo zachowania
Pzedmio wykładu 5 Makoskopowy i mikoskopowy punk widzenia sysemu fizycznego an i własności subsancji Własności eksensywne i inensywne subsancji Ogólna foma zasady zachowania Pawo zachowania wielkości skalanej
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe
Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna
Zastosowanie metod prognostycznych w planowaniu strategii przedsiębiorstwa
Zastosowanie metod prognostycznych w planowaniu strategii przedsiębiorstwa Dr Adam Kucharski Spis treści 1 Czym jest prognozowanie i jakie pełni funkcje 2 2 Prognozowanie heurystyczne 4 2.1 Burza mózgów.....................................
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
ANALIZA MOŻLIWOŚCI WYKORZYSTANIA MODELU HOLTA- WINTERSA DO OCENY POPYTU NA CZĘŚCI ZAMIENNE DO POJAZDÓW ROLNICZYCH 3
Wojciech Pzsupa, Sławomi Juściński 2 Uniwese Pzodnicz w Lublinie ANALIZA MOŻLIWOŚI WYKORZYSANIA MODELU HOLA- WINERSA DO OENY POPYU NA ZĘŚI ZAMIENNE DO POJAZDÓW ROLNIZYH 3 Wsęp Współczesn nek zbu, zapewniając
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
RYNEK MIĘSA. Biuro Analiz i Programowania ARR Nr 36/2010
RYNEK MIĘSA TENDENCJE CENOWE Ceny skupu żywca Na przełomie sierpnia i września br. odnotowano obniżkę cen skupu trzody chlewnej. Według danych Zintegrowanego Systemu Rolniczej Informacji Rynkowej MRiRW
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH
dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA
Pojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Copyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
OCENA PRZYDATNOŚCI MODELU WINTERSA DO PROGNOZOWANIA CEN SKUPU MLEKA
STOWARZYSZENIE Ocena przydatności EKONOMISTÓW modelu Wintersa ROLNICTWA do prognozowania I AGROBIZNESU cen skupu mleka Roczniki Naukowe tom XV zeszyt 4 231 Jarosław Lira Uniwersytet Przyrodniczy w Poznaniu
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki
POLITECHNIKA OPOLSKA Wydział Elektotechniki i Automatyki Mg inż. Michał Tomaszewski MODEL PRZEDSIĘBIORSTWA DYSTRYBUCYJNEGO DZIAŁAJĄCEGO NA OTWARTYM RYNKU ENERGII ELEKTRYCZNEJ Autoefeat pacy doktoskiej
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, sr. 224 233 ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH 1991-2011 Kaarzyna Unik-Banaś Kaedra Zarządzania i Markeingu w Agrobiznesie
Przepięcia i sieci odciążające
Pzepięcia i sieci odciążające Cel ćwiczenia: apoznanie sudenów z zjawiskami pzepięć komuacyjnych na yysoach i sposobami ochony elemenów półpzewodnikowych, oaz poznanie sposobów ochony elemenów w pełni
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
6.4. Model zdyskontowanych zysków Metoda skorygowanej wartości bieżącej (APV)
6.4. Model zdyskonowanych zysków Jeśli za mienik waości pzyjęy zosanie zysk neo, obliczenie waości wewnęznej odbywać się będzie ak samo, jak miało o miejsce w pzypadku modeli dywidendowych i cash flow.
ANALIZA DANYCH W STATA 8.0
ANALIZA DANYCH W STATA 8.0 ZAJĘCIA 3 1. Rozpoczęcie 1. Stwozyć w katalogu C:/temp katalog stata_3 2. Ściągnąć z intenetu ze stony http://akson.sgh.waw.pl/~mpoch plik zajecia3.zip (kyje się on pod tekstem
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
Model AS-AD. Krzywa AD M P = (1)
Model AS-AD modelu IS-LM oaz w podsawowym modelu keynesowskim zakładaliśmy, że ceny w gospodace są sałe. Teaz uchylamy o założenie. Model AS-AD pezenujemy w pzeszeni poduk poziom cen (lub inflacja. Równowagę
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Optyka falowa. polaryzacja. dwójłomność optyczna. czym jest zjawisko polaryzacji stan a stopień polaryzacji sposoby polaryzacji
W-21 (Jaoszewicz) 16 slajdów Na podsawie pezenacji pof. J. Rukowskiego Opyka falowa polayzacja czym jes zjawisko polayzacji san a sopień polayzacji sposoby polayzacji dwójłomność opyczna pzyczyny mikoskopowe
Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego
61 Barometr Regionalny Nr 2(24) 2011 Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego Jarosław Bielak Wyższa Szkoła Zarządzania i Administracji w Zamościu Streszczenie:
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
KIERUNKI ZMIAN STRUKTURY AGRARNEJ WOJEWÓDZTW WEDŁUG GRUP TYPOLOGICZNYCH (PROGNOZA DO ROKU 2020)
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 202, st. 58 68 KIERUNKI ZMIAN STRUKTURY AGRARNEJ WOJEWÓDZTW WEDŁUG GRUP TYPOLOGICZNYCH (PROGNOZA DO ROKU 2020) Jadwiga Bożek Kateda Statystyki Matematycznej,
Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych
Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska - 2011 aktualizacja dla edycji 2013/14. Cel studium
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
Wojciech Bijak. Dynamiczna analiza finansowa minimalnego wymogu kapitałowego (MCR) kalibracja modelu rozszerzonego marginesu wypłacalności
Dynamiczna analiza finansowa minimalnego wymogu kapitałowego () kalibracja modelu rozszerzonego marginesu wypłacalności Wojciech Bijak Instytut Ekonometrii SGH 8.6.28 1 Plan prezentacji Wymogi kapitałowe
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Prognoza liczby wypadków drogowych w Polsce
CHUDY-LASKOWSKAKatarzyna 1 PISULA Tomasz 2 Prognoza liczby wypadków drogowych w Polsce WSTĘP Bezpieczeństwo w ruchu drogowym jest problemem niezwykle aktualnym i dotykającym wszystkich mieszkańców nie