PROGNOZY I SYMULACJE
|
|
- Przybysław Górski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Foecasg s he a of sag wha wll happe, ad he explag wh dd. Ch. Chafeld (986) PROGNOZY I SYMULACJE Kaaza Chud Laskowska kosulacje: p. 00A śoda - czwaek - soa eeowa: hp://kc.sd.pz.edu.pl/
2 WYKŁAD VIII Szeeg czasowe III. Meoda wskaźkowa. Model edu pełzającego z wagam hamoczm 3. Meoda jedomech okesów
3 3. MODEL TRENDU PEŁZAJĄCEGO Z WAGAMI HARMONICZNYMI Ted pełzając jes modelem adapacjm służ do budow pogoz kókookesowch. Dae: 3; ; 0; ; 5; ; 6 KONSTRUKCJA TRENDU PEŁZAJĄCEGO (k=3) ETAP ETAP Usalee waośc sałej wgładzaa k<, Wższa waość sałej wgładzaa powoduje wększe wgładzae szeegu czl słabsze eagowae a zma zachodzące w szeegu. Oszacowae a podsawe kolejch fagmeów szeegu o długośc k, lowch fukcj edu f ( ) a b Y Pzedzał czasu Fagme szeegu Waośc Y f () 3-3,, f ()=,5+36,33 -, 3, +0+ f ()=,5+0, ,, f 3 ()=,5+3,00-6, 5, f ()=,5+0, lowe fukcje edu , 6, 5++6 f 5 ()=,5+,33 3
4 3. MODEL TRENDU PEŁZAJĄCEGO Z WAGAMI HARMONICZNYMI ETAP 3 Oblczee waośc wgładzoch zmeej ( ) z. waośc eoeczch wkającch z -ej fukcj edu. Z daej fukcj edu f wzacza sę waośc eoecze dla ch okesów, a podsawe kóch fukcja bła oszacowaa. ˆ f ()=,5 +36,33=3,83 f ()=,5 +36,33=39,33 Waośc eoecze fukcj edu f Y ed pełzając f() f() f(3) f() f(5) waośc wgładzoe 3,83 3,83 39,33 0,6 (3,83+0,6)/=0 3 0,83 0,6 39,5 (0,83+0,6+39,5)/3=0,33 0,6,00, (0,6++,)/3=,6 5,50,6 3,83 (,5+,6+3,83)/3=3,6 6 3,,33 (3,+,33)/=3,5,83,83 ETAP Oblczee śedej waośc wgładzoej dla każdego okesu jako śedej ameczej waośc wgładzoch oblczoch dla ego okesu w eape 3. Wkes waośc wgładzoch w posac segmeowej (ed pełzając) moża pzedsawć a wkese
5 3. MODEL TRENDU PEŁZAJĄCEGO Z WAGAMI HARMONICZNYMI EKSTRAPOLACJA MODELU TRENDU PEŁZAJĄCEGO (k=3) ETAP 5 Oblczee pzosów fukcj edu dla waośc wgładzoch w..., +(od do ) (od do -) 0 3,83, w 3 0,33 0 0,33,6 3 0,33,8 5 3,6,6,06 6 3,5 5 3,6-0,0,83 6 3,5,08 5
6 6 3. MODEL TRENDU PEŁZAJĄCEGO Z WAGAMI HARMONICZNYMI ETAP 6 Nadae wag poszczególm pzosom Realzują oe efek posazaa fomacj, adawae są ak, ab ajowsze pzos mał ajwększe zaczee. Suma wag wos. Są o wag hamocze. C,..., 0,0 C C 0,05 3 C C 0, C C 0, C C 0, C C 0, C C
7 3. MODEL TRENDU PEŁZAJĄCEGO Z WAGAMI HARMONICZNYMI ETAP Okeślee śedego pzosu edu jako śedej ważoej (wagam hamoczm) wszskch oblczoch w 5 eape pzosów: w C w w, 0,0 0,3 0,05,8 0,03,06 0,59 ( 0,0) 0,,08 0,09 0,98 ETAP 8 Wzaczee pogoz pukowej a mome/okes T T ( T ),83,83,83 (8 (9 (0 ) ) ) 0,98 0,98 0,98 w 5,8 6,9, Y ed pełzając Podobe jak dla modelu Hola, wszske koleje pogoz leżą a posej. Dla edu pełzającego jes o posa pzechodząca pzez puk (, ), kóej ages kąa achlea do os czasu wos w.
8 . METODA TRENDÓW JEDNOIMIENNYCH OKRESÓW Jeśl szeeg czasow chaakezuje sę edecją ozwojową, wahaam okesowm oaz pzpadkowm o do kosukcj kókookesowch pogoz moża zasosować meodę edów jedomech okesów. Meoda polega a oszacowau paameów aalczej fukcj edu oddzele dla poszczególch faz cklu. Pogoza wzaczaa jes za pomocą eksapolacj oszacowaej fukcj edu dla każdej faz cklu. Sosowae ej meod wmusza pzjęce zasad saus quo, z., że uzma sę zaobsewowaa edecja dla każdej z faz cklu. j 0 j j, j... k,... j j 0, - welkość zmeej pogozowaej dla -ej faz w j-m cklu - zmea czasowa, ( j ) j - paame sukuale -ego modelu, j - składk losow,
9 . METODA TRENDÓW JEDNOIMIENNYCH OKRESÓW Na podsawe dach doczącch kwaalej welkośc zapasów samochodów u poduceów (w s. sz.) wzaczć pogoz zapasów samochodów a ok 00 oaz dokoać oce ch dokładośc, pzjmując, że kcza welkość względego błędu ex ae wos %. Kwaał Zapas samochodów u poduceów (s) I,,,8 5 5, 5, II 5, 5, 5, 6 6, 6, III,9 5, 5,3 5,6 5,9 6,3 IV 5,3 5,6 5,9 6, 6, 6, Zapas samochodów u poduceów (s) 6,8 6,6 6, 6, 6,0 5,8 5,6 5, 5, 5,0,8,6,,,0 I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV Ocea wzokowa pozwala a zdefkowae składowej ssemaczej w posac edu osącego oaz wahań ssemaczch a akże wahań pzpadkowch. Składowe pozwalają a zasosowae meod edów jedomech okesów. Szeeg chaakezuje sę egulaoścą, e obsewuje zaczącch zma w zdefkowach Składowch. Zakłada sę że zaówo edecja ozwojowa jak wahaa ssemacze e ulegą soej zmae w okese pogozowam. 9
10 . METODA TRENDÓW JEDNOIMIENNYCH OKRESÓW Meoda polega a oszacowau paameów edu oddzele dla poszczególch faz cklu. Każd szeeg czasow odosząc sę do okeśloej faz cklu opsa jes modelem lowm. j 0 j j, j... k,... 6,8 6,6 6, 6, 6,0 5,8 5,6 5, 5, 5,0,8,6,,, I II III IV Zapas samochodów u poduceów (s) Kwaał Rówae modelu R s ˆ j 0,8 3,88 ˆ j 0,6, 88 ˆ j 0,6, 59 0, 5, 0 I 0,95 0, II 0,99 0,05 III 0,9 0,08 ˆ j IV 0,99 0,0 Pogoz wzacza sę pzez eksapolację oszacowach l edów dla poszczególch faz cklów. 0
11 . METODA TRENDÓW JEDNOIMIENNYCH OKRESÓW Kwaał, Zapas samochodów u poduceów (s) Pogoza Bezwzględ błąd ex ae v Względ błąd ex ae (w %) 0,8 3,88 5, I 0,6,9, 0,6,88 6, II 0,3 3,5,3 0,6,59 6, III 0,3,0, 0, 5,0 6,93 IV 0,0 0, s m ˆ 6 0,066 0, 8 6 V T T s 3,5,5 6 0, 0, Oblczea dla I kwaałów V 00% 0,69 5, 00%,9% (-ś)^ (-)^ 6,5,,6 0,006,5,, 0, ,5,8, 0,006 0, ,5 5, 5,8 0,03 6 6,5 5, 5,56 0,096,5 0,066 3,50,9
12 5. METODA WSKAŹNIKÓW Jes o jeda z częścej użwach meod w aalze wahań sezoowch. Polega oa a wzaczeu wskaźków sezoowośc poszczególch faz cklu. Gd amplud wahań W aalogczch fazach cklu są w pzblżeu ake same, mów sę o wahaach bezwzględe sałch. Gd zaś welkośc amplud wahań zmeają sę w mej węcej m samm sosuku, mów sę o wahaach względe sałch. W pewszm pzpadku moża użć do opsu kszałowaa sę zjawska modelu addwego a w dugm mulplkawego: ˆ ˆ s W aalze wahań sezoowch moża wodębć cze eap: -wodębee edu, -elmację edu z szeegu czasowego, -elmację wahań pzpadkowch, -oblczee wskaźków sezoowośc. Wodębee edu polega a wgładzeu szeegu czasowego za pomocą -wazowej ceowaej lub eceowaej śedej uchomej, lub fukcj aalczej. Celem agegacj dach jes uzskae szeegu czasowego, w kóm e wsępują wahaa sezoowe. Pzepowadza sę ją pzez sumowae dach w okesach pzjęch w badau w dae odpowadające okesom ówm długośc cklu sezoowego. s
13 5. METODA WSKAŹNIKÓW Elmacj edu w w pzpadku szeegu czasowego z wahaam addwm dokouje sę oblczając óżcę zeczwsch waośc zmeej pogozowaej waośc wgładzoch, ozmach z modelu edu. W pzpadku wahań mulplkawch wzacza sę loaz zeczwsch waośc pogozowaej zmeej pzez odpowadające m waośc wgładzoe. z ˆ, z ˆ Oblczoe waośc uwzględają wahaa sezoowe. Elmację dzałaa składka losowego pzepowadza sę oblczając zw. suowe wskaźk sezoowośc. Saową je welkośc śede wzaczoe a podsawe welkośc z, doczącch ej samej faz wahań. z k z k j 0 j, Wskaźk sezoowośc (czse) wzacza sę ze wzoów: s z q, s z q, q z, lczba faz cklu Pogozę wzacza sę asępująco: ( ) s, ( ) s 3
14 5. METODA WSKAŹNIKÓW - pzkład Lczba awa masz z powodu spadku moc zaslaa w pewm pzedsęboswe podukcjm w poszczególch półoczach la pzedsawała sę asępująco: 3; ; ; 9; ; 6; 8; ; ; 8. Wzaczć pzewdwaą lczbę awa w 008 oku. Ckl składa sę z faz. W pewszej (I półocze) zeczwsa waość zajduje sę powżej l edu a w dugej waośc są pożej l edu. =0 (obsewacj) = (ckle) Kozsam z modelu mulplkawego: c ( w) ( w) c pogoza a okes w -ej faze cklu pogoza wsępa a okes w -ej faze cklu czs wskaźk sezoowośc w -ej faze cklu Lczba awa Lczba awa = 30,00 -,08 Koelacja: = -, Czas Pogozę wsępą wzacza sę pzez eksapolację zaobsewowaej edecj ozwojowej. ˆ Y 30
15 5. METODA WSKAŹNIKÓW - pzkład ˆ Y , Ab wzaczć waośc czsch wskaźków sezoowośc c ależ: a) oblczć waośc z jako loaz waośc zeczwsch eoeczch: z...0, Y ŷ z,, z, 0,8 z3,,3 z, 0,86 z5, 8 6 0, z6, 0,89 z,,3 z8, 0,9 z9,, z0, ,80 b) waośc z zaweają efek oddzałwaa wahań sezoowch jak pzpadkowch, w celu ch welmowaa oblcza sę suowe wskaźk sezoowośc z (=,) pzez wzaczee śedej ch waośc z, kóe odpowadają jedomem fazom: z, 5,3,0,3,,8 z 0,8 5 0,86 0,89 0,9 0,80 0,89 c) oblcza sę śedą ameczą suowch wskaźków sezoowośc q q,8 0,89,006 ˆ q z 5
16 5. METODA WSKAŹNIKÓW - pzkład Czse wskaźk sezoowośc wzacza sę jako loaz suowch wskaźków sezoowośc z welkośc q. c c,8,006 0,89,006,5 0,85 c z q (,%) (8,5%), dla I półocza dla II półocza c suma wskaźków mus bć ówa lczbe faz Czs wskaźk sezoowośc c =,5 ozacza, że w pewszej faze cklu czl w I półoczu lczba awa jes pzecęe o,5% wższa od waośc wkającej z l edu, c =0,85 ozacza że w dugej faze cklu (II półoczu) lczba awa jes pzecęe o,5% mejsza od waośc wkającej z l edu. Pogoza wzaczoa a koleje kwaał ma posać:, ( w), c 30,5 9 awa, ( w), c 30 0,85 5 awa 6
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)
Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
Dane modelu - parametry
Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Implementacja metod prognozowania szeregów czasowych w pakiecie TSprediction środowiska R
D nż. Tomasz Bałomowcz Unwese Ekonomczn we Wocławu Kaeda Ekonome Infomak Implemenacja meod pognozowana szeegów czasowch w pakece TSpedcon śodowska R Seszczene. Celem akułu jes pezenacja pakeu TSpedcon
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Statystyka. Katarzyna Chudy Laskowska
Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u
Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę
Analiza i prognozowanie szeregów czasowych
Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA
. WSTĘP. MTODA ULRA. WSTĘP. MTODA ULRA Wprowadzee Mowacja pozawaa meod umerczc:. Rozwązwae bardzo dużc kosrukcj o złożoej geomer welu sopac swobod powżej mloa prz różorodm zacowau maerałów.. Śwadome wkorzswae
Równania różniczkowe cząstkowe
Meod ecze Wkład Rówaa óżczkowe cząskowe d hab. Po Foczak Rówaa óżczkowe cząskowe RRC lczba zech F ząd ówaa: ząd awższe pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : : : :
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
STATYSTYKA EKONOMICZNA w LOGISTYCE
TATYTYKA EKONOMICZNA w LOGITYCE Meody saysycze w aalze procesów dysrybucj dr Zbgew Karwack Kaedra Badań operacyjych UŁ Zakres przedmo logsyk procesów dysrybucj Przedmoem logsyk procesów dysrybucj jes przemeszczae
KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech
KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l
Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak
Meod ecze Wkład D Po Foczak Rówaa óŝczkowe cząskowe RRC lczba zech L L L F ząd ówaa: ząd awŝsze pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : :: : : : : : Nelowe lowe Qas
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Niepewności pomiarów. DR Andrzej Bąk
Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
= n = = i i. Sprawdzenie istotności współczynnika korelacji ρ dla populacji na podstawie współczynnika r
STATYSTKA I ANALIZA DANYCH LAB V I VI. Pla laboatoum V VI Koelacja współczk koelacj Peasoa testowae stotośc współczka koelacj Regesja lowa egesja posta, ocea dopasowaa, testowae stotośc współczków egesj
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
MODELOWANIE I PROGNOZOWANIE
L.Kowalsk-Modelowae progozowae MODELOWANIE I PROGNOZOWANIE MATERIAŁY DYDAKTYCZNE o Podsawowe charakersk dach sasczch, o Ideks, o Progozowae- wadomośc wsępe, o Modele ekoomercze, o Jedorówaow model low,
KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Analiza współzależności
Aalza wsółzależośc Pozawae zwązków mędz cecham jes aalzą ze względów ozawczch. W rzeczwsośc rzadko jes ak ab jakaś cecha obeków lub zjawsko ewego rodzaju kszałowało sę zuełe ezależe od ch cech lub zjawsk.
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren)
Rachunek różniczkowy funkcji wielu zmiennych
Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec
Opracowanie wyników pomiarów
Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów
Prognozowanie i symulacje
Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Zasady budowania prognoz ekonometrycznych
Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi
SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM
SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Czas trwania obligacji (duration)
Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Zmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
Rachunek różniczkowy funkcji wielu zmiennych
EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
ĆWICZENIE 3 ANALIZA WSPÓŁZALEŻNOŚCI ZJAWISK MASOWYCH
Laboaoum eod aczch ĆWICZENIE 3 ANALIZA WPÓŁZALEŻNOŚCI ZJAWIK AOWCH Jedo wozące zboowość chaaezowae ą zazwcza za pomocą welu cech óe wzaeme ę wauuą. Celem aalz wpółzależośc e wedzee cz mędz badam cecham
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY
Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Prognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
Johann Wolfgang Goethe Def.
"Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US
Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
IV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
MODEL SHARP A - MIARY WRAŻLIWOŚCI
MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
INSTRUMENTY DŁUŻNE. Cena czysta, cena brudna Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE ea czysa, cea buda Rodzaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji ea buda obligacji Obligacje są oowae a giełdzie. ea giełdowa ykowa podawaa
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
STATYSTYKA I stopień ZESTAW ZADAŃ
Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń
Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży
Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,
Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem
Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać
123456 782923456 6 22336 46466 6 6 6 783863658386 6 6 6 6 4!"! 468983#84636434$4636 6 6 6 %&6 '5626 ()68'546 6 6 &6 6 82845469234548*+6 %6 6 6 %6 '56268'546"'844$$6 %6 6 6 %&6 '5626 ()68'546,6 6 6 6 -*386
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego