Początki fizyki współczesnej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Początki fizyki współczesnej"

Transkrypt

1 Pozątki fizyki współzesnej Plan.. Promieniowanie iała doskonale zarnego.. Foton.. Efekt fotoelektryzny.4. Efekt Comptona

2 Trohę historii Gustav Kirhhoff (84-887) W 859 rozpozyna się droga do mehaniki kwantowej od odkryia linii D w widmie słoneznym Elektron odkryty przez J.J.Thomsona w 897 (neutron w 9). Nowe idee były przyjmowane niehętnie I was told long afterwards by a distinguished physiist who had been present at my leture that he thought I had been pulling their leg. Promieniowanie iała doskonale zarnego Promieniowanie Temp. pow. Słońa 6000 K λ max =480 nm Odbiie and absorpja Idealny absorber a e K(, T) Gęstość energii emitowanej przez iało doskonale zarne jest funkją tylko długośi fali i temperatury Prawo przesunięć Wien a maxt.9 0 m K 4

3 Promieniowanie iała doskonale zarnego 5 Promieniowanie iała doskonale zarnego W 896 Wien zaproponował: e Wien (, T ) b 5 exp( a / T) a, b stałe Posłużył się analogią do rozkładu Boltzmanna, który dotyzy rozkładu energii klasyznego gazu w równowadze Wilhelm Wien (864-98) Prawdopodobieństwo, że ząstezka w temperaturze ma energię E jest proporjonalne do exp(-e/kt), gdzie k jest stałą Boltzmanna równą J/K. Większe energie są mniej prawdopodobne, średnia energia rośnie z temperaturą. Całkowita intensywność promieniowania u tot u tot T 4 Ludwig Boltzmann (85-89) σ- Stefan-Boltzmann onstant W/(m K 4 ) 6

4 Promieniowanie iała doskonale zarnego Max Plank zaproponował model iała doskonale zarnego blakbody, wprowadzają rezonatory, które są ładunkami drgająymi harmoniznie. Zastosował fizykę statystyzną Boltzmanna ale zrobił drastyzne założenie: Max Plank ( ) Osylatory mogą emitować lub absorbować promieniowanie o zęstotliwośi f jedynie porjami energii o wartośi, gdzie h jest stałą uniwersalną o wymiarze Js. Plank wprowadził pojęie kwantu. b e (, T) 5 exp( a / T) Dla krótkih fal zyli małyh λ a/ T otrzymujemy wzór Wiena Dla długih fal zyli podzerwieni, wzór Planka pasuje lepiej do danyh eksperymentalnyh niż model Wiena 7 Promieniowanie iała doskonale zarnego John Strutt, znany jako Lord Rayleigh opublikował artykuł na temat funkji Kirhhoff a kilka miesięy wześniej niż Plank (900). Rayleigh skonentrował się na promieniowaniu a nie na osylatorah Planka Przyjęto, że promieniowanie składa się z elektromagnetyznyh fal. Gęstość energii tyh fal jest równoważna gęstośi energii zbioru osylatorów harmoniznyh. Średnia energia przypadająa na jeden osylator wynosi kt 8 4

5 Promieniowanie iała doskonale zarnego Prawo Rayleigh a-jeans a prowadzi do katastrofy w ultrafioleie Wzór Wien a nie pasuje w zakresie małyh zęstośi Wzór Planka 8 u( f, T) exp( / kt ) 9 Przypadki granizne wzoru Plank a: 8 u( f, T) exp( / kt ) Zakres dużyh zęstośi: / kt 8 u( f, T) exp( / kt ) prawo Wien a 0 5

6 Przypadki granizne wzoru Plank a: 8 u( f, T) exp( / kt ) Zakres małyh zęstośi: / kt Kiedy f jest małe lub T duże, lub żyjemy w świeie gdzie h zmierza do 0 (klasyznie) Dla małyh x: exp( x) x u( f, T) 8 ( / kt ) 8 f kt To jest wyniki klasyznego modelu Rayleigh a Promieniowanie iała doskonale zarnego W 905, Albert Einstein doszedł do wniosku, że nie można wyprowadzić wzoru Plank a z praw klasyznej fizyki. Słuszność wzoru Planka a oznaza konie fizyki klasyznej. Albert Einstein Radykalna propozyja kwantyzaji energii: ( ) w limiie małyh zęstośi (Rayleigh-Jeans) obraz falowy (Maxwell), w limiie dużyh zęstośi (Wien) o promieniowaniu należy myśleć jak o gazie kwantów 6

7 Promieniowanie iała doskonale zarnego E energia ząstki zęstotliwość fali ( ) Promieniowanie należy w pewnyh przypadkah traktować jak fale a w innyh eksperymentah jak ząstki To jest dualizm korpuskularno-falowy Korpuskularna natura promieniowania Doświadzalnie : Efekt fotoelektryzny (uwalnianie elektronów z metaliznej powierzhni pod wpływem promieniowania o określonej zęstośi) Efekt Comptona (rozpraszanie promieniowania X i zmiana zęstotliwośi) Te zjawiska, podobnie jak promieniowanie iała doskonale zarnego, nie mogą być wyjaśnione przy użyiu modelu falowego. 4 7

8 Foton 5 Foton Promieniowanie elektromagnetyzne jest traktowane jako fale elektromagnetyzne, któryh istnienie wynika z równań Maxwella. Zjawisk interferenji, dyfrakji i polaryzaji nie można wytłumazyć inazej. Istnieją jednak inne zjawiska, w któryh należy wprowadzić pojęie kwantu promieniowania, fotonu. 6 8

9 Foton Foton jest ząstką pozbawioną masy, która porusza się z prędkośią światła 0 8 m/s. Jego energia E i p są powiązane relają: E p Prae Planka i Einsteina pokazały, że energia liniową funkją zęstotliwośi f: jest E stała wprowadzona przez Planka h= J s 7 Foton Stosują relaję: f gdzie λ jest długośią fali związanej z fotonem można stwierdzić, że moment pędu p pojedynzego fotonu jest odwrotnie proporjonalna do długośi fali p E h 8 9

10 Foton Energia fotonu E= może być przedstawiona poprzez zęstość ω: jako: E f gdzie: h J s stała Plank a 9 Foton Ten obraz sugeruje, że natężenie promieniowania o danej zęstotliwośi, tj. szybkość z jaką promieniowanie dostarza energię na jednostkę powierzhni jest związane z lizbą fotonów N. Im większe natężenie tym większa lizba fotonów. 0 0

11 Foton Przykład: Żarówka 60 W promieniuje głównie λ 000 nm. Obliz lizbę fotonów emitowanyh w iągu jednej sekundy. Rozwiązanie: Jeżeli podzielimy ałkowitą energię przez energię fotonu, otrzymany lizbę fotonów. Całkowita energia emitowana w iągu jednej sekundy wynosi 60 W. Częstotliwość f wynosi: f 4 0 Hz energia fotonu E= Lizba fotonów emitowanyh w iągu s: n W ( W J s)( 0 s ) fotonów / s Efekt fotoelektryzny Metal plate Colletor e - Vauum hamber Photoeletrons Grid voltage Światło wywołuje prąd elektronowy, mierzony przez kolektor. Energia kinetyzna może być oblizona na podstawie napięia hamowania (grid voltage).

12 Efekt fotoelektryzny Minimalna energia fotonu dla wybiia elektronu o energii kinetyznej K=½ mv K=½ mv W Energia kinetyzna elektronu Padająy foton K W Wnętrze metalu na zewnątrz metalu Efekt fotoelektryzny Metal zawiera dużą ilość swobodnyh elektronów (m e masa elektronu, -e - ładunek elektronu), około lub na atom. Te elektrony są quasi-swobodne zyli nie są związane z atomami lez mogą, po dostarzeniu pewnej energii, opuśić metal. Energia ta nosi nazwę pray wyjśia W z metalu. Praa wyjśia jest różna dla różnyh metali i zależy od stanu powierzhni. Typowe wartośi W zmieniają się od do 8 ev. 4

13 Max. energia kinetyzna 0-0- Efekt fotoelektryzny Einstein zaproponował mehanizm efektu fotoelektryznego. Założył, że foton może zostać zabsorbowany przez elektron jeżeli energia fotonu przekraza konkretną wartość: W Enegia, którą otrzymuje elektron pozwala mu opuśić metal. Elektrony emitowane z metalu pod wpływem promieniowania elektromagnetyznego noszą nazwę fotoelektronów. Jest to zjawisko fotoelektryzne zewnętrzne. 5 Efekt fotoelektryzny E k 0 f 0 f f zęstotliwość Li Na Dla pewnyh metali, słaba wiązka światła niebieskiego wytwarza fotoprąd, podzas gdy bardzo silne światło zerwone nie powoduje efektu elektryznego. Jeżeli energia fotonu jest większa od pray wyjśia elektronu z metalu, prędkość v suh jaką osiąga elektron można oblizyć z: m e v W zasada zahowania energii 6

14 Max. energia kinetyzna 0-0- Efekt fotoelektryzny. Energia fotoelektronów emitowanyh z metalu zależy tylko od zęstotliwośi promieniowania i gdy zęstotliwość granizna zostaje przekrozona, zależność energii kinetyznej elektronu od zęstotliwośi jest liniowa. E k Li Na Energia kinetyzna fotoelektronu jest niezależna od natężenia padająego promieniowania, i.e. od lizby fotonów. Pojedynzy foton jest absorbowany przez pojedynzy elektron. 0 f 0 f f zęstotliwość W podejśiu klasyznym, energia związana z falą EB zależy od kwadratu amplitudy pola elektryznego. Bez względu na to jak mała jest zęstotliwość promieniowania, w dłuższym zasie zostanie zdeponowana wystarzająa energia aby pokonać praę wyjśia. 7 Efekt fotoelektryzny. Lizba fotoelektronów emitowanyh jest wprost proporjonalna do natężenia promieniowania, tj. do lizby fotonów padająyh na powierzhnię metalu.. Nie obserwuje się żadnego upływu zasu pomiędzy oświetleniem metalu i emisją fotoelektronu. Klasyznie, energia jest gromadzona, jest dostarzana w sposób iągły. Efekt nie zahodzi na swobodnyh elektronah. 8 4

15 Efekt fotoelektryzny Przykład: Eksperyment wykazał, że gdy promieniowanie elektromagnetyzne o długośi fali 70 nm pada na powierzhnię Al, fotoelektrony są emitowane. Elektrony o największej energii kinetyznej są zatrzymywane przez przyłożenie odpowiedniego pola elektryznego o różniy potenjałów 0.406V. Obliz praę wyjśia z metalu. Rozwiązanie: E K ev h ( C)(0.405 V) J s)(.00 0 m/s) m ( J W E K J 4. ev J / ev 9 J 0 J 9 Efekt Comptona Jeżeli światło można traktować jak zbiór fotonów, należy spodziewać się zderzeń pomiędzy fotonami i ząstkami materii (np. elektronami). Efekt Comptona jest wynikiem rozpraszania fotonu γ na quasi-swobodnyh elektronie e w metaliznej próbe (folii): e ' e' Załóżmy, że pozątkowo : elektron jest w spozynku, pęd wynosi 0, ale energia spozynkowa m e foton ma energię i pęd q o wartośi / 0 5

16 Efekt Comptona Inident photon Target eletron at rest Reoil eletron p q Sattered photon q Efekt Comptona Po zderzeniu: foton ma energię i pęd pęd elektronu is q ' p o wartośi / końowa energia elektronu (relatywistyznie): p m e 4 p Zas. zah. pędu q q' p q q zas. zah. energii m e ' p m e 4 6

17 Efekt Comptona Przesunięie Comptona (długośi) Δλ=λ -λ zyli różnia pomiędzy długośią fali przed (λ ) i po (λ) rozproszeniu: ' h me os stała m Kąt rozproszenia Ma istotne znazenie dla fal krótkih np. promieniowania X lub gamma. Efekt Comptona Crystal X-ray soure X-ray θ α X-ray detetor Thin foil Rozproszone promieniowanie X ulega dyfrakji na krysztale. Kąt α pozwala określić długość fali promieniowania rozproszonego 4 7

18 Efekt Comptona Obserwujemy dwa piki: jeden dla elektronów, drugi dla jonów dodatnih hyperphysis.phy-astr.gsu.edu/ Ze wzrostem kąta rozpraszania, intensywność piku od elektronów rośnie 5 Efekt Comptona Przykład: W eksperymenie rozproszeniowym, wiązka padająego promieniowania X o długośi fali λ= nm jest rozpraszana pod kątem 5 o. Obliz wartość przesunięia Comptona. Rozwiązanie: Względna zmiana długośi fali: ' h me ( os ) 4 o ( J s) ( os( 5 )) 0 8 ( kg) ( m s) ( m) około % 6 8

19 Podsumowanie Od połowy XIX wieku i na pozątku XX w. badano zjawiska związane z energią i zahowaniem materii (zagadki) Przyniosło to nowe spojrzenie na fizykę i wiele nagród (Nobel) Narodziła się mehanika kwantowa 7 9

Początki fizyki współczesnej

Początki fizyki współczesnej Pozątki fizyki współzesnej 1 Plan 1.1. Promieniowanie iała doskonale zarnego 1.. Foton 1.3. Efekt fotoelektryzny 1.4. Efekt Comptona 1 Trohę historii Gustav Kirhhoff (184-1887) W 1859 rozpozyna się droga

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Wykład 25. Kwantowa natura promieniowania.

Wykład 25. Kwantowa natura promieniowania. Piotr Posmykiewiz Wykład z fizyki 1 Wykład 5 Kwantowa natura promieniowania. 1.1 Promieniowanie ieplne. Ciała zazynają świeić, jeżeli podgrzać je do dostateznie wysokih temperatur. Świeenie iał, które

Bardziej szczegółowo

W3. Mechanika klasyczna objekty klasyczne

W3. Mechanika klasyczna objekty klasyczne W3. Mechanika klasyczna objekty klasyczne 1. Obiekt w ruchu ma tendencję do pozostawania w ruchu. 2. Siła równa się masa razy przyspieszenie 3. Dla każdego działania jest równa i przeciwna reakcja. Sir

Bardziej szczegółowo

I.2 Promieniowanie Ciała Doskonale Czarnego

I.2 Promieniowanie Ciała Doskonale Czarnego I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

ν=c/λ E=hν Repeta z wykładu nr 1 Detekcja światła Radiometria Promieniowanie termiczne

ν=c/λ E=hν Repeta z wykładu nr 1 Detekcja światła Radiometria Promieniowanie termiczne Repeta z wykładu nr Detekja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres pozty elektroniznej: makowski@fizyka.umk.pl Biuro: 365, telefon: 6-350 - zakres wykładu, warunki

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna Elementy optyki Odbiie i załamanie fal Zasada Huygensa Zasada Fermata Interferenja Dyfrakja Siatka dyfrakyjna 1 Odbiie i załamanie fal elektromagnetyznyh na graniah dwóh ośrodków Normalna do powierzhni

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Wykład 7 Kwantowe własności promieniowania

Wykład 7 Kwantowe własności promieniowania Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.

Bardziej szczegółowo

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

Wykład 17: Elementy fizyki współczesnej

Wykład 17: Elementy fizyki współczesnej Wykład 17: Elementy fizyki współczesnej Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona Fizyka kwantowa - po co? Jeśli chcemy badać zjawiska, które zachodzą w skali mikro -

Bardziej szczegółowo

Elementy dynamiki relatywistycznej r r

Elementy dynamiki relatywistycznej r r Elementy dynamiki relatywistyznej r r F ma - nieaktualne r r d p F - nadal aktualne dt ale pod warunkiem, że r r m r p γ m gdzie m - masa spozynkowa. Możliwa interpretaja: r r m p m gdzie masa zależy od

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa

Bardziej szczegółowo

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga.

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga. Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 01.12.2018 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,

Bardziej szczegółowo

Zjawiska korpuskularno-falowe

Zjawiska korpuskularno-falowe Zjawiska korpuskularno-falowe Gustaw Kircoff (84-887) W 859 rozpoczyna się droga do mecaniki kwantowej od odkrycia linii D w widmie słonecznym Elektron odkryty przez J.J. Tompsona w 897 (neutron w 93).

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Efekt fotoelektryczny. 18 października 2017

Efekt fotoelektryczny. 18 października 2017 Efekt fotoelektryczny 18 października 2017 Treść wykładu Promieniowanie ciała doskonale czarnego wzór Plancka Efektu fotoelektryczny foton (kwant światła) promieniowanie termiczne fakt znany od wieków:

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =

Bardziej szczegółowo

Elementy szczególnej teorii względności

Elementy szczególnej teorii względności Elementy szzególnej teorii względnośi Podstawowe założenia szzególnej teorii względnośi: Albert Einstein 195 Prawa fizyzne są takie same dla wszystkih obserwatorów któryh kłady odniesienia porszają się

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Elementy mechaniki relatywistycznej

Elementy mechaniki relatywistycznej Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka

Bardziej szczegółowo

Rozdział 1. Światło a fizyka kwantowa

Rozdział 1. Światło a fizyka kwantowa Rozdział 1. Światło a fizyka kwantowa 2016 Spis treści Promieniowanie termiczne Ciało doskonale czarne Teoria promieniowania we wnęce, prawo Plancka Zastosowanie prawa Plancka w termometrii Zjawisko fotoelektryczne

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Podstawy fizyki sezon Dualizm światła i materii

Podstawy fizyki sezon Dualizm światła i materii Podstawy fizyki sezon 2 10. Dualizm światła i materii Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha W poprzednim

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

FALOWA NATURA MATERII

FALOWA NATURA MATERII FALOWA NATURA MATERII Zadawniony podział: fizyka klasyczna (do 1900 r.) fizyka współczesna (od 1900 r., prawo Plancka). Przekonanie o falowej naturze materii ugruntowało się w latach dwudziestych XX w.

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga).

9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga). 9. Optyka 9.6. Promieniowanie rentgenowskie. yfrakja promieniowania rentgenowskiego (prawo Bragga). Shemat budowy lampy rentgenowskiej. Przyspieszone do dużej prędkośi elektrony uderzają w antykatodę zmniejszają

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 4 24 października 2016 A.F.Żarnecki

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykład 30 Szczególne przekształcenie Lorentza

Wykład 30 Szczególne przekształcenie Lorentza Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

Problemy fizyki początku XX wieku

Problemy fizyki początku XX wieku Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

Mechanika relatywistyczna

Mechanika relatywistyczna Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Wykład 19: Elementy fizyki współczesnej

Wykład 19: Elementy fizyki współczesnej Wykład 19: Elementy fizyki współczesnej Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@ag.edu.pl ttp://layer.uci.ag.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Fizyka klasyczna i kwantowa. Krótka historia fizyki.

Fizyka klasyczna i kwantowa. Krótka historia fizyki. Fizyka klasyczna i kwantowa. Krótka historia fizyki. Pod koniec XIX wieku fizycy byli bardzo dumni z rozwoju teorii fizycznych i nic nie wskazywało na przełomowe odkrycia które nastąpiły. Tylko nieliczne

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo