Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu"

Transkrypt

1 Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej (definicja jest dok ladnie taka sama) i rzeczywiście siȩ to robi jest szereg zastosowań przestrzeni metrycznych, gdzie metryki i zbiory s a dziwne my jednak skoncentrujemy siȩ na metryce euklidesowej na prostej, p laszczyźnie i w przestrzeni trójwymiarowej. Definicja 1 Kul a (otwart a) o środku x i promieniu r > 0 nazywamy zbiór Zatem K(x, r) := {y : d(x, y) < r}. kula na prostej to odcinek otwarty K(x, r) = (x r, x + r); kula K(x, r) na p laszczyźnie (lub w C) to ko lo o środku x i promieniu r bez brzegu; kula K(x, r) w przestrzeni trójwymiarowej to kula (w sensie geometrii) o środku x i promieniu r. Definicja 2 Zbiór A jest otwarty jeśli wraz z każdym punktem zawiera pewn a kulȩ o środku w tym punkcie i dodatnim promieniu, tj. Przyk lady: x A r > 0 K(x, r) A. każdy odcinek otwarty na prostej (ale na p laszczyźnie odcinki nie s a otwarte); p laszczyzna, pó lp laszczyzna bez brzegu, ko lo bez brzegu, prostok at bez brzegu s a zbiorami otwartymi na p laszczyźnie (ale nie w przestrzeni trójwymiarowej); 1

2 walec bez brzegu, stożek bez podstawy i powierzchni bocznej, kula bez sfery j a ograniczaj acej s a otwarte w przestrzeni trójwymiarowej. Definicja 3 Punktem skupienia zbioru A nazywamy każdy taki punkt x, że każda kula o środku w tym punkcie (i dodatnim promieniu) zawiera inny niż x punkt należ acy do A, tj. r > 0 y x y a K(x, r). Przyk lady: 0 jest punktem skupienia zbiorów (0, 1), [0, 1), R, {1, 1/2, 1/3, 1/4, 1/5, 1/6,... }, {z C : i z < 1}. (1, 1) jest punktem skupienia zbiorów: ko lo o środku (0, 0) i promieniu 2, prostok at o wierzcho lkach ( 2, 2), (2, 2), (2, 2), ( 2, 2). Definicja 4 Zbiorem domkniȩtym nazywamy zbiór który zawiera wszystkie swoje punkty skupienia. Przyk lady: zbiorami domkniȩtymi na prostej s a np.: zbiory skończone, odcinki domkniȩte, pó lproste domkniȩte, prosta; zbiorami domkniȩtymi na p laszczyznie s a np.: odcinek z końcami, prosta, pó lp laszczyzna z brzegiem, ca la p laszczyzna, zbiór pusty lub skończony. 2

3 Tablica 3.4 W lasności zbiorów otwartych i domkniȩtych (1) Zbiór A jest otwarty wtedy i tylko wtedy, gdy jego dope lnienie jest zbiorem domkniȩtym. (2) Suma teoriomnogościowa dowolnej rodziny zbiorów otwartych jest zbiorem otwartym. (3) Przekrój skończonej rodziny zbiorów otwartych jest zbiorem otwartym. (4) Zbiór pusty jest zbiorem otwartym. (1 ) Zbiór A jest domkniȩty wtedy i tylko wtedy, gdy jego dope lnienie jest zbiorem otwartym. (2 ) Przekrój dowolnej rodziny zbiorów domkniȩtych jest zbiorem domkniȩtym. (3 ) Suma teoriomnogościowa skończonej rodziny zbiorów domkniȩtych jest zbiorem domkniȩtym. (4 ) Zbiór pusty jest zbiorem domkniȩtym. 3

4 2. Zbiory zwarte W kombinatoryce znana jest tzw. zasada szufladkowa Dirichleta: Twierdzenie 5 (Zasada szufladkowa Dirichleta) Jeśli w lożymy do k, k N, szufladek n, n N, n > k kul to w którejś szufladce musieliśmy w lożyć conajmniej dwie kule. Oczywiście trudno jest takie twierdzenie przenieść na zbiory nieskończone w przestrzeni metrycznej. Ale s a zbiory nieskończone, w których jeśli wybierzemy nieskończony podzbiór A to bȩdzie istnia la kula o dowolnie ma lym promieniu zawieraj aca nieskończenie wiele elementów A. Definicja 6 Zbiór P R d (albo w dowolnej przestrzeni metrycznej) jest zwarty jeśli każdy jego podzbiór nieskończony A ma punkt skupienia należ acy do P. Oczywiście nie każdy zbiór jest zwarty: zbiór liczb naturalnych nie jest zwarty: wybierzmy jako A zbiór liczb parzystych, nie ma on punktów skupienia; zbiór (0, 1) nie jest zwarty, jego podzbiór {1/2, 1/3, 1/4, 1/5,... } ma punkt skupienia 0 ale nie należy on do (0, 1). Dwa powyższe przyk lady pokazuj a dwa powody dla których zbiór w R d nie jest zwarty: nieograniczoność i niedomkniȩtość. Twierdzenie 7 Każdy zbiór zwarty jest ograniczony i domkniȩty. Okazuje sie, że implikacja odwrotna jest prawdziwa w R d. Twierdzenie 8 d-wymiarowa kostka domknieta w R d jest zwarta, w szczególności przedzia l domkniȩty, prostok at z brzegiem, prostopad lościan ze ścianami itp. s a zwarte. 4

5 Weżmy podzbiór domkniȩty A zbioru zwartego P, jesli U A jest nieskończonym podzbiorem to ze zwartości P ma punkt skupienia w P ale z domknietości ten punkt skupienia musi być w A zatem uzasadniliśmy, że A jest zwarty: Wniosek 9 (tw. Heine Borela) Podzbiór w R d jest zwarty wtedy i tylko wtedy, gdy jest ograniczony i domkniȩty. Wniosek 10 (tw. Bolzano-Weierstrassa) Każdy nieskończony i ograniczony podzbiór w R d ma punkt skupienia w R d. Aby udowodnić twierdzenie potrzebny jest interesuj acy sam w sobie lemat: Lemat 11 (Lemat Ascoliego) Zstȩpuj acy ci ag niepustych przedzia lów domkniȩtych ma niepust przekrój. Uwaga: Lemat Ascoliego ma duże znaczenie w teorii aproksymacji oznacza on bowiem, że jeśli aproksymujemy od góry ci agiem (b n ) nie rosn acym a od do lu ci agiem niemalej acym (a n ) i jeśli zawsze a n b n to istnieje liczba wiȩksza lub równa od wszystkich a n i mniejsza lub równa wszystkim b n. a wiȩc istnieje jakaś liczba któr a można traktować jako wartość aproksymowanej wielkości. Dowód: Niech (I n ), I n := [a n, b n ], jest zstȩpuj acym ci agiem niepustych przedzia lów domkniȩtych. Zatem ci ag (a n ) jest niemalej acy a ci ag (b n ) jest nierosn acy. Co wiȩcej ci ag (a n ) jest ograniczony z góry przez b 1, b 2 i dowolne b m : weźmy bowiem dowolne b m, wówczas: a n a n+m b n+m b m Definiujemy: x = sup{a n : n N}. Oczywiście x jest ograniczeniem górnym ci agu (a n ), ale ponieważ każde b m jest ograniczeniem górnym ci agu (a n ), to x b m i x jest ograniczeniem dolnym ci agu (b m ). St ad x należy do każdego odcinka I n. 5

6 Udowodnimy twierdzenie dla odcinka na prostej: Twierdzenie 12 Odcinek domkniȩty [0, 1] jest zwarty. Dowód: Weźmy dowolny podzbiór nieskończony A w I. Dzielimy odcinek I na dwie czȩśći: [0, 1/2], [1/2, 1] (nie s a roz l aczne!). Któraś z po lówek zawiera nieskończenie wiele elementów zbioru A. Tȩ po lówkȩ nazywamy I 1. Dzielimy teraz I 1 na dwie po lówki i któraś z nich znowu zawiera nieskończenie wiele elementów zbioru A. Nazywamy j a I 2 i tak dalej. Dostajemy ci ag zstȩpuj acy niepustych przedzia lów domkniȩtych I n. Z lematu Ascoliego istnieje punkt x należ acy do wszystkich tych przedzia lów. Weźmy teraz kulȩ K(x, r) o środku x i promieniu r > 0 tj. odcinek (x r, x + r). Ponieważ odcinek I n ma d lugość 1/2 n a x należy do tego odcinka wiȩc dla dostatecznie dużego n I n jest zawarty w rozpatrywanej kuli. Ale I n zawiera nieskończenie wiele elementów zbioru A wiȩc też kula K(x, r) zawiera nieskończenie wiele elementów zbioru A. Pokazalismy, że x jest punktem skupienia zbioru A, a x I. 6

7 3. Ci agi Ci ag to po prostu funkcja, której dziedzin a jest zbiór liczb naturalnych. Przyk lady: ci ag arytmetyczny, np.: ci ag geometryczny, np.: a n = 1 + 3n b n = 2 3 n. ci ag rekurencyjny, np. Fibonacciego: a 0 = 1, a 1 = 1, a n+2 = a n+1 + a n. W praktyce czȩsto pewien algorytm obliczania jakiejś wielkości produkuje ci ag kolejnych przybliżeń danej wielkości. Powstaje pytanie czy ta procedura jest poprawna. Aby by la poprawna musimy mieć pewność, że jeśli za lożymy sobie z góry jak aś dok ladność to po dostatecznie wielu krokach dostaniemy przybliżenie szukanej wielkości z za lożon a dok ladności a. Prowadzi to do definicji granicy ci agu (granic a naszego ci agu przybliżeń musi być szukana wielkość) oczywiście w praktyce ważne jest jeszcze oszacowanie b lȩdu pozwalaj ace zdecydować, któy wyraz ci agu jest przybliżeniem z szukan a dok ladności a i informacja o szybkości zbieżności (co pozwala oszacować nak lad obliczeniowy). Definicja 13 (granicy) Liczba g jest granica ci agu liczb (x n ) o ile tzn. w R lub C: ε > 0 N N n > N, n N d(x n, g) < ε. ε N N n > N, n N x n g < ε Oznaczenie: g = lim n x n. Ci ag maj acy granicȩ nazywamy zbieżnym. Ci ag nie zbieżny nazywamy rozbieżny. 7

8 Przyk lad: Szukamy rozwi azania równania: Procedura: cos x = x, x [0, π] x 0 = 0, x n+1 = cos(x n ), czy jest ona poprawna? w tym celu należa loby wiedzieć, czy lim n x n jest równe rowi azaniu. Odpowiedź brzmi TAK i wynika z tw. Banacha o kontrakcji, o którym bȩdziemy mówić poźniej. 8

9 Tablica 4.2 W lasności ci agów zbieżnych (1) Ci ag (x n ) n N w przestrzeni metrycznej X jest zbieżny do punktu x X wtedy i tylko wtedy, gdy każda kula K(x, r), r > 0, zawiera prawie wszystkie wyrazy ci agu (x n ) n N. (2) Zmiana skończenie wielu wyrazów ci agu nie wp lywa na jego zbieżność ani na wartość granicy. (3) Każdy ci ag ma co najwyżej jedn a granicȩ. (4) Każdy ci ag zbieżny jest ograniczony. (5) Punkt x jest punktem skupienia zbioru E w przestrzeni metrycznej X wtedy i tylko wtedy, gdy istnieje ci ag (x n ) n N E taki, że x n x dla każdego n N oraz lim n x n = x. 9

10 Tablica 4.3 W lasności arytmetyczne i porz adkowe granic ci agów Niech (z n ) n N i (w n ) n N bȩd a zbieżnymi ci agami liczb zespolonych a c liczb a zespolon a. (1) lim n (z n + w n ) = lim n z n + lim n w n ; (2) lim n c z n = c lim n z n ; (3) lim n (c + z n ) = c + lim n z n ; (4) lim n z n w n = (lim n z n ) (lim n w n ); (5) jeśli z n 0, n = 0, 1,... i lim n z n 0, to lim n 1 1 lim n z n. (6) jeśli x n > 0, m N, to lim m x n = m lim x n. z n = Niech (x n ) n N, (y n ) n N bȩd a ci agami w R k a (α n ) n N bȩdzie ci agiem liczb rzeczywistych. (7) Ci ag (x n ) n N, x n := (ξ 1 n,..., ξ k n), jest zbieżny wtedy i tylko wtedy, gdy dla j = 1,..., k ci agi (ξ j n) n N s a zbieżne. Wówczas lim n x n = (lim n ξ 1 n,..., lim n ξ k n). (8) lim n (x n + y n ) = lim n x n + lim n y n ; (9) lim n x n, y n = lim n x n, lim n y n ; (10) lim n α n x n = (lim n α n ) (lim n x n ). (11) jeśli k = 1 oraz x n y n dla prawie wszystkich n N, to lim n x n lim n y n. 10

11 Przyk lady: granica ci agu sta lego x n = a. Hipoteza: lim x n = a. n Dla każdego ε > 0 i każdego n N: Granica ci agu 1/n. Hipoteza: d(x n, a) = x n a = a a = 0 < ε lim 1/n = 0. n Weźmy dowolny ε > 0. Z twierdzenia Eudoksosa istnieje N N takie, że 0 < 1/N < ε zatem dla n > N jest 1/n < 1/N wiȩc 0 < 1/n < ε, czyli 1/n 0 < ε Granica ci agu n p, p > 1. Hipoteza: Weźmy lim n Ze wzoru dwumianowego Newtona czyli Przenosz ac na druga stronȩ: n p = 1. x n := n p 1 > nx n < (1 + x n ) n = ( n p) n = p 1 + n( n p 1) < p 0 < n p 1 < p 1 n. 11

12 Z w lasności arytmetycznych granic ci agów i poprzedniego przyk ladu: ci ag p 1 jest zbieżny do zera. Wiȩc ci ag n p 1 jest wepchniȩty n miȩdzy dwa ci agi zbieżne do zera. Jeśli wiȩc prawie wszystkie wyrazy pierwszego i drugiego s a bliskie zeru to i pośredni ciag musi mieć tȩ w lasność. Uzyskaliśmy, że lim( n p 1) = 0 Zatem z w lasności arytmetycznych: lim n p = lim( n p 1) + lim 1 = = 1 Pomys l stosowany w ostatnim przyk ladzie powinien być sformalizowany: Twierdzenie 14 (twierdzenie o trzech ci agach) Jeśli x n y n z n dla n N oraz lim n = lim z n = x, n n to Przyk lad: Ci ag n 2 n + 3 n. Mamy: lim y n = x. n 3 n 3 n n 2 n + 3 n n 23 n = 3 n 2 Skrajne ci agi d aż a do 3 wiȩc z tw. o 3 ci agach pośredni też d aży do 3. Ci ag n n. Weźmy: x n = n n 1 > 0 Ze wzoru dwumianowego Newtona: ( ) n x 2 n < (x 2 n + 1) n = ( n n ) n = n. Zatem 0 < x n < 2n n(n 1) = 2 n 1. Latwo zobaczyć, że prawy skrajny ci ag d aży do zera. Zatem i pośredni d aży do zera i n n = 1. lim n 12

13 4. Ci agi monotoniczne i granice Twierdzenie 15 Ci ag niemalej acy liczb rzeczywistych (x n ) jest zbieżny wtedy i tylko wtedy, gdy jest ograniczony z góry i wtedy lim x n = sup{x n : n n N}. Analogiczny wynik zachodzi dla ciagów nierosn acych i kresu dolnego. Dowód: Wiemy, że ci ag zbieżny musi być ograniczony wiȩc koniecznośc warunku wynika z tego. Dostateczność: Za lóżmy, że ci ag niemalej acy (x n ) jest ograniczony z góry zatem zbiór A := {x n : n N} jest ograniczony i ma kres górny x. Dla dowolnego ε > 0 liczba x ε jest mniejsza od najmniejszego ograniczenia górnego wiȩc nie jest ograniczeniem górnym zbioru A. Istnieje N N takie, że x ε < x N x. Dla każdego n > N zachodzi zatem x ε < x N x n x n > N x n x < ε W pliku granica ciagow w4.nb pokazane sa przyk lady wyliczania granic ci agów przy pomocy programu Mathematica. 13

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Ciagi liczbowe wykład 4

Ciagi liczbowe wykład 4 Ciagi liczbowe wykład 4 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, r. akad. 2016/2017 Definicja (ciagu liczbowego) Ciagiem liczbowym nazywamy funkcję

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31 Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb

Bardziej szczegółowo

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ,

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, SPÓJNOŚĆ I POJȨCIA BLISKIE (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Abstract. Poniższe notatki do ćwiczeń zbieraj a podstawowe pojȩcia i stwierdzenia

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa Niech X i Y oznaczaj a przestrzenie topologiczne, zaś C(X,Y) bȩdzie zbiorem

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych T O P O L O G I A O G Ó L N A WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych Definicja. Przez rodzinȩ skierowan a rozumiemy dowolny zbiór z porz adkiem czȩściowym (K, ), taki

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

OSOBNO ANALITYCZNYCH

OSOBNO ANALITYCZNYCH Uniwersytet Jagielloński Instytut Matematyki Zbigniew B locki ZBIORY OSOBLIWOŚCI FUNKCJI OSOBNO ANALITYCZNYCH Praca magisterska Promotor: Prof. dr hab. Józef Siciak Kraków 99 .Wstȩp. Jeśli Ω jest zbiorem

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Analiza matematyczna I 1 Spis treści 1 Wstep. Ograniczenia i kresy zbiorów. 4 1.1 Oznaczenia..................................... 4 1.2 Zbiory liczbowe................................... 4 1.3 Kwantyfikatory...................................

Bardziej szczegółowo

Matematyka dyskretna Oznaczenia

Matematyka dyskretna Oznaczenia Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Rozdzia l 1. Podstawowe elementy teorii krat

Rozdzia l 1. Podstawowe elementy teorii krat Rozdzia l 1. Podstawowe elementy teorii krat 1. Zbiory czȩściowo uporz adkowane Definicja. Relacjȩ binarn a określon a na zbiorze A nazywamy relacj a czȩściowo porz adkuj ac a, gdy jest zwrotna, antysymetryczna

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

Wyk lad 1 Podstawowe struktury algebraiczne

Wyk lad 1 Podstawowe struktury algebraiczne Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017 Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu

Bardziej szczegółowo

Dziedziny Euklidesowe

Dziedziny Euklidesowe Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia

KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia 18 grudnia 2006 Zasada szufladkowa, zwana też zasada Dirichleta, a w jez. ang.,,pigeonhole Principle może być sformu lowana naste puja co.

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

3.1 Wprowadzenie teoretyczne i przyk lady

3.1 Wprowadzenie teoretyczne i przyk lady Rozdzia l 3 Model probabilistyczny Ko lmogorowa 3.1 Wprowadzenie teoretyczne i przyk lady Przez model probabilistyczny Ko lmogorowa, zwany też przestrzeni a probabilistyczn a, bȩdziemy rozumieli nastȩpuj

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne Liczby rzeczywiste. Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być:.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo