ANALIZA MATEMATYCZNA 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA MATEMATYCZNA 1"

Transkrypt

1 ANALIZA MATEMATYCZNA 1

2 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018

3 Marian Gewert Wydział Matematyki Politechnika Wrocławska pwredupl wwwimpwredupl/ gewert Zbigniew Skoczylas Wydział Matematyki Politechnika Wrocławska pwredupl wwwimpwredupl/ skoczylas Projekt okładki IMPRESJA Studio Grafiki Reklamowej Copyright c by Oficyna Wydawnicza GiS Utwór w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopiujących, nagrywających i innych Ponadto utwór nie może być umieszczany ani rozpowszechniany w postaci cyfrowej zarówno w Internecie, jak i w sieciach lokalnych, bez pisemnej zgody posiadacza praw autorskich Składwykonanowsystemie L A TEX ISBN Wydanie XVII zmienione, Wrocław 2018 Oficyna Wydawnicza GiS, sc, wwwgiswrocpl Druk i oprawa: I-BiS Usługi Komputerowe Wydawnictwo, spółka jawna 4

4 Spis treści Wstęp 7 Zestawy zadań z kolokwiów 9 Pierwszekolokwium 9 Drugiekolokwium 25 Zestawy zadań z egzaminów 38 Egzaminpodstawowy 38 Egzaminpoprawkowy 59 Odpowiedzi i wskazówki 80 Pierwszekolokwium 80 Drugiekolokwium 86 Egzaminpodstawowy 94 Egzaminpoprawkowy 98 5

5 Wstęp Niniejsze opracowanie jest trzecią częścią zestawu podręczników do Analizy matematycznej 1 Pozostałymi częściami zestawu są Analiza matematyczna 1 Definicje, twierdzenia, wzory oraz Analiza matematyczna 1 Przykłady i zadania Książka zawiera zadania, które w ubiegłych latach studenci Politechniki Wrocławskiej rozwiązywali na kolokwiach i egzaminach z Analizy matematycznej 1 Zadania obejmują rachunek różniczkowy i całkowy funkcji jednej zmiennej wraz z zastosowaniami w fizyce i technice Do wszystkich zestawów kolokwialnych oraz do zestawów egzaminacyjnych o numerach nieparzystych podane są odpowiedzi Opracowanie pozwala studentom zapoznać się z rodzajami oraz stopniem trudności zadań kolokwialnych i egzaminacyjnych Jest to jednocześnie dodatkowy materiał do samodzielnej nauki Zadania z tego zbioru mogą być wykorzystywane przez wykładowców i prowadzących ćwiczenia przy układaniu zestawów na kolokwia i egzaminy Aktualne wydanie nie zawiera zestawów na ocenę celującą Zestawy te stały się częścią oddzielnego opracowania Algebra i analiza Egzaminy na ocenę celującą Dziękujemy Koleżankom i Kolegom z Wydziału Matematyki Politechniki Wrocławskiej za zestawy zadań z kolokwiów i egzaminów, a także za uwagi o poprzednich wydaniach Marian Gewert Zbigniew Skoczylas 7

6 Egzamin poprawkowy 59 5NapisaćwzórMaclaurinazresztąR 3 dlafunkcjif(x)=arctgx 6Dobraćparametryaibtak,abyfunkcjafokreślonawzorem 3e x dla x<0, f(x)= 3b dla x=0, 1 sinx (1+ax) dla x>0 byłaciągławpunkciex 0 =0 7ObliczyćpoleobszaruDograniczonegoosiąOxiwykresamifunkcji:f(x)=3 3 x, g(x)= 3x+6 n 4n +3 8 Obliczyć granicę n +2 n 5 n Egzamin poprawkowy Zestaw 1 1Obliczyćcałkęnieoznaczonązfunkcjif(x)= 2 Obliczyć całkę x 2 sinhxdx 2 x 2 +6x+18 3ObliczyćpoleobszaruDograniczonegoprzezkrzywe:y= 1 x,y=4 x,y=1,y=4 Sporządzić rysunek tego obszaru ln(1+4 x ) 4 Obliczyć granicę x ln(1+3 x ) 5 Obliczyć granicę ( 2+n+n2 (n+1) 2 +2) 6 Wyznaczyć najmniejszą i największą wartość funkcji 3x f(x)= 4x2 +1 na przedziale[ 1, 2] 7Korzystajączdefinicjiobliczyćpochodnąfunkcjif(x)= 1 x 2wpunkciex 0=2 8Wyznaczyćprzedział,naktórymfunkcjaf(x)=x+ 1 x jestrosnącaiwypukław górę Zestaw 2 2n 2 +sin 2 n 1 Korzystając z twierdzenia o trzech ciągach obliczyć granicę n 2 +n+1

7 60 Zestawy zadań z egzaminów 2 Funkcja f jest określona wzorem { e x dla x 0, f(x)= Ax+B dla x>0 DlajakichwartościparametrówAiBfunkcjatajesta)ciągła,b)różniczkowalnaw punkciex 0 =0? ( 3 Przy pomocy reguły de L Hospitala obliczyć granicę ctgx 1 ) x 0 + x 4 Wyznaczyć przedziały wypukłości i punkty przegięcia wykresu funkcji f(x)= x 1+x 2 5Wyznaczyćnajmniejsząinajwiększąwartośćfunkcjif(x)=x 2arctgxnaprzedziale[0, + ) 6 Całkując przez części obliczyć całkę nieoznaczoną x 2 e x dx 7 Obliczyć całkę nieoznaczoną dx x 3 x 8ObliczyćdługośćłukukrzywejΓ:y= x2 4 lnx 2,gdzie1 x 2 Zestaw 3 1Obliczyćcałkęnieoznaczonązfunkcjif(x)= 2 Obliczyć całkę x 2 cosxdx 1 4x 2 +8x+40 3ObliczyćpoleobszaruDograniczonegoprzezkrzywe:y=x 2,y=x 2 +3,y=4 Sporządzić rysunek tego obszaru 4NapisaćwzórTaylorazresztąR 3 dlafunkcjif(x)=arctgxprzyjmującx 0 =1 ( 5 Obliczyć granicę x 4 1/x 2 1/x) x ( 6 Obliczyć granicę 2n2 +1 2n +4n+1) 2 7 Wyznaczyć najmniejszą i największą wartość funkcji f(x) = x+1 x 2 +2x+2 naprzedziale[ 7, 0] 8Korzystajączdefinicjiobliczyćpochodnąfunkcjif(x)= xwpunkciex 0 = 9 Zestaw 4 1 Korzystając z twierdzenia o trzech ciągach obliczyć granicę n 1+2 n n

8 Egzamin poprawkowy 61 2 Funkcja f jest określona wzorem { cosx dla x 0, f(x)= Ax+B dla x>0 DlajakichwartościparametrówAiBfunkcjatajesta)ciągła,b)różniczkowalnaw punkciex 0 =0? 3 Korzystając z reguły de L Hospitala obliczyć granicę e x e x 2x x 0 x sinx 4 Wyznaczyć przedziały wypukłości i punkty przegięcia wykresu funkcji f(x)=x 2 e 1 x 5Wyznaczyćnajmniejsząinajwiększąwartośćfunkcjif(x)=cosx+ 3sinxna przedziale[0, π/2] 6 Całkując przez części obliczyć całkę nieoznaczoną arctgxdx 7Obliczyćcałkęnieoznaczonązfunkcjiwymiernejf(x)= x+2 x 3 +x 8 Obliczyć objętość bryły V ograniczonej powierzchnią powstałą przez obrót krzywej y=cosx,gdzie π/2 x π/2,wokółosiox Zestaw 5 1Obliczyćcałkęnieoznaczonązfunkcjif(x)= 2 Obliczyć całkę x 3 lnxdx 1 x 2 +10x+34 3 Narysować i obliczyć pole obszaru D ograniczonego przez krzywe: x=y 2, x= y2, y=1, y=2 4 4NapisaćwzórTayloradlafunkcjif(x)=tgxprzyjmującx 0 =π/3orazn=3 [ ( 5 Obliczyć granicę xln 1+sin 1 )] x x 6 Obliczyć granicę ( 16n2 +5n 4 4n) 7Korzystajączdefinicjiobliczyćpochodnąfunkcjif(x)= 1 x wpunkciex 0 =4 8Wyznaczyćprzedział,naktórymfunkcjaf(x)=x x+1jestmalejącaiwypukła wdół

9 62 Zestawy zadań z egzaminów Zestaw 6 n 1 Korzystając z twierdzenia o trzech ciągach obliczyć granicę n+sin 2 n 2 Funkcja f jest określona wzorem { sinx dla x 0, f(x)= Ax+B dla x>0 DlajakichwartościparametrówAiBfunkcjatajesta)ciągła,b)różniczkowalnaw punkciex 0 =0? 5 1+2x x 3 Przy pomocy reguły de L Hospitala obliczyć granicę x x+x 4Wyznaczyćnajmniejsząinajwiększąwartośćfunkcjif(x)=x 4 x 2 wjejdziedzinie 5NapisaćwzórMaclaurinazresztąR 3 dlafunkcjif(x)= 3 1+x,anastępnieuzasadnić nierówność 3 x 1+x>1+ 3 x2 9 dlakażdegox>0 6 Całkując przez części obliczyć całkę nieoznaczoną xarctgxdx 7 Obliczyć całkę nieoznaczoną z funkcji wymiernej f(x) = 1 x 3 +x 2 8ObliczyćpoleobszaruDograniczonegoprzezkrzywe:x=y 2,x+y=2 Zestaw 7 1Obliczyćcałkęnieoznaczonązfunkcjif(x)= 2 Obliczyć całkę xarctgxdx 9 9x 2 +6x+5 3 Narysować i obliczyć pole obszaru D ograniczonego przez krzywe: y=4 x 2,y=3x,y=3 4NapisaćwzórTayloradlafunkcjif(x)=coshxprzyjmującx 0 =ln2orazn=3 arctg2x 5 Obliczyć granicę x 0 arctg3x 6 Obliczyć granicę (2n 1+n+4n 2 ) 7Wyznaczyćnajmniejsząinajwiększąwartośćfunkcjif(x)= 3 (x 2 +x) 2 naprzedziale[ 2, 3] 8Korzystajączdefinicjiobliczyćpochodnąfunkcjif(x)= 3 xwpunkciex 0 =1

10 Egzamin poprawkowy 63 Zestaw 8 n 1 Korzystając z twierdzenia o trzech ciągach obliczyć granicę n Funkcja f określona jest wzorem { x 2 dla x 1, f(x)= Ax+B dla x>1 DlajakichwartościparametrówAiBfunkcjatajesta)ciągła,b)różniczkowalnaw punkciex 0 =1? 3 Przy pomocy twierdzenia de L Hospitala obliczyć granicę x 0 + (sinx) x 4 Wyznaczyć przedziały wypukłości i punkty przegięcia wykresu funkcji f(x)= 1 x Wyznaczyćnajmniejsząinajwiększąwartośćfunkcjif(x)=x x 2wjejdziedzinie 6 Całkując przez części obliczyć całkę nieoznaczoną arcsinxdx 1 7 Obliczyć całkę nieoznaczoną z funkcji wymiernej f(x) = x 3 x 2 8 Obliczyć objętość bryły V ograniczonej powierzchnią powstałą przez obrót krzywej y= cos 3 x,gdzie x π/2,wokółosiox Zestaw 9 1 Obliczyć granicę x 0 +(ctgx)tgx 2 Wykorzystując różniczkę funkcji obliczyć przybliżoną wartość wyrażenia xdx 3 Obliczyć całkę (e x ) 3 4 Obliczyć granicę ( 4n 16n 2 +9n 1 ) Wyznaczyćprzedziały,naktórychfunkcjaf(x)=x 2 lnxjestrosnącaiwypukław dół 6 Narysować wykres funkcji f: R R, która spełnia wszystkie podane warunki: x 0 f(x)=2; x 0 + f(x)= ; prostay=πjestasymptotąfunkcjifw ; granica x f(x)nieistnieje(właściwaaniniewłaściwa) Na rysunku zaznaczyć fragmenty wykresu, które spełniają podane warunki

11 64 Zestawy zadań z egzaminów 7 Sformułować twierdzenie o pochodnej funkcji odwrotnej Korzystając z tego twierdzenia wyprowadzić wzór (arctgx) = 1 1+x 2 8 Obliczyć pole obszaru D ograniczonego wykresem funkcji y = 5 4x x 2 4x+20,prostymix=0,x=1orazosiąOx Zestaw 10 1 Podać dziedzinę, zbadać różniczkowalność i obliczyć pochodną funkcji 2Obliczyćgranicęciągua n = f(x)=log 2 (xsinx) 2 ( ) n+2 n 2 n+1 3Uzasadnićnierównośćarctg ( x 2 +1 ) x+ π 4 dlakażdegox 0 4WyznaczyćfunkcjęFpierwotnąfunkcjif(x)=xe x2 taką,żef(2)=0 5KorzystajączewzoruMaclaurinadlafunkcjif(x)= 10 1+xobliczyć 10 2zdokładnością 0001 ( 6 Podać definicję granicy funkcji w nieskończoności Obliczyć x 4 2 x) x 7Dobraćparametrya,bictak,abyfunkcjafbyłaróżniczkowalnana R,jżeli: ax+ x2 dla x< 1, 2 f(x)= bx 2 dla 1 x 0, csinx dla x>0 8 Obliczyć objętość bryły V powstałej z obrotu wokół osi Ox obszaru określonego nierównościami:x 2 +y 2 1,0 y 1/2 Zestaw 11 1 Uzasadnić, że granica x [4x (cosx+1)]nieistnieje 2ObliczyćpoleobszaruDograniczonegowykresamifunkcji:y=tgx,gdzie0 x< π/2,y=ctgx,gdzie0<x π/2orazosiąox 3 Sformułować twierdzenie o trzech ciągach Korzystając z tego twierdzenia obliczyć granicę n 2 n +2 3 n +3 4 n 4ZnaleźćwymiarykonserwywkształciewalcaoobjętościV=250πcm 3,dowykonania której trzeba użyć najmniej blachy Sporządzić rysunek

12 Egzamin poprawkowy 65 dx 5 Obliczyć całkę x 3 +4x 6Oszacowaćdokładnośćwzoruprzybliżonegocos2x 1 2x 2 dla0 x 1/10 7 Sformułować twierdzenie Bolzano o miejscach zerowych funkcji Korzystając z tego twierdzeniawskazaćprzedziałodługości1/2,wktórymrównanie3 x +x 3 =0ma rozwiązanie 8Znaleźćprzedziaływypukłościipunktyprzegięciawykresufunkcjif(x)= x2 x 2 +1 Zestaw 12 1Danesąfunkcjef(x)= x 1 ig(x)= x+2 Zbadaćciągłośćiróżniczkowalność funkcjizłożonejh(x)=(f g)(x) 2 Korzystając z twierdzenia Lagrange a uzasadnić nierówność ln ( x 2 +e ) 1+ 2x e dlakażdegox 0 3KorzystajączewzoruMaclaurinaobliczyćcos 1 3 zdokładnością Podać definicję granicy właściwej ciągu Korzystając z tej definicji uzasadnić równość n 2 +n 1 2n 2= 1 2 5WyznaczyćfunkcjęFpierwotnąfunkcjif(x)=xsin2xtaką,żeF(π/2)=π/2 ( 6 Zbadać istnienie granicy lnx ) x 0 x 7Podaćdziedzinęorazobliczyćpochodnąfunkcjif(x)=log 2 ( log2 ( x 2 4 )) 8 Wykorzystując definicję całki oznaczonej obliczyć granicę n2 + n n n 2 (n 1) 2 n 2 Zestaw 13 1 Podać wzór na objętość bryły obrotowej Korzystając z tego wzoru obliczyć objętośćstożkaściętegoowysokościhipromieniachpodstawr,r,gdzier>rsporządzić rysunek 2 Obliczyć granicę x 0 +(sinx)x 3NapisaćwzórTaylorazresztąR 3 dlafunkcjif(x)=tgxipunktux 0 =π/6 4 Obliczyć całkę arcsinxdx

13 66 Zestawy zadań z egzaminów 5PrzezpunktP=(1,3)poprowadzićprostątak,abywrazzdodatnimipółosiami układu współrzędnych utworzyła trójkąt o najmniejszym polu Sporządzić rysunek x 2 dx 6 Obliczyć całkę x 2 +2x+5 7Podaćdefinicjępochodnejfunkcjifwpunkciex 0 Korzystającztejdefinicjiobliczyćpochodnąfunkcjif(x)= 1 wpunkciex 0 >0 x ( ) n+3 2n 8 Obliczyć granicę 2n+1 Zestaw 14 1 dla x 0, 1 dla x 1, 1Danesąfunkcjef(x)= x g(x)= x 1 0 dla x=0, 1 dla x=1 Zbadać ciągłość i różniczkowalność funkcji złożonej h(x) =(g f)(x) 2WyznaczyćfunkcjęFpierwotnąfunkcjif(x)=arctgxtaką,żeF(1)=π/2 3 Podać dziedzinę, wyznaczyć ekstrema, asymptoty oraz naszkicować wykres funkcji ( ) lnx 2 2 f(x)= x 4 Korzystając z twierdzenia Lagrange a uzasadnić nierówność x x arcsinx dlakażdego0 x<1 1 x 2 5Dobraćparametryaibtak,abyfunkcjafokreślonawzorem { x a dla x<a, f(x)= bx dla x a była różniczkowalna na R 6 Zbadać monotoniczność, ograniczoność i zbieżność ciągu a n =( 1) n n ( 1) n+1n2 1 n 7 Obliczyć całkę oznaczoną 6 8Obliczyćpochodnąfunkcjif(x)= 4 x 3 dx x 2 2x x Zestaw 15 1Obliczyćgranicęciągux n = ( ) 5 8n 4n+2 4n+3

14 Egzamin poprawkowy 67 2WykorzystującwzórMaclaurinaobliczyć 3 ezdokładnością10 3 ( 3 Obliczyć granicę x 4 1/x 3 1/x) x cos2x 4 Obliczyć całkę e x dx 5 Korzystając z twierdzenia o trzech funkcjach obliczyć granicę x ex (2+3sinx) 6ObliczyćpoleobszaruDograniczonegokrzywymi:x=y 2,x=y 2 +3,x=4 Sporządzić rysunek (4x+1)dx 7 Obliczyć całkę x 2 +10x+34 8 Wyznaczyć najmniejszą i największą wartość funkcji f(x) = x 4x2 +1 naprzedziale[ 1, 2] Zestaw 16 1 Korzystając z twierdzenia Lagrange a uzasadnić nierówność ln ( 1+sin 2 x ) xsin2x dlakażdego0 x π 4 2Wykazać,żerównaniex 5 +5x+1=0madokładniejedenpierwiasteknależącydo przedziału( 1, 0) 3Dobraćparametryaibtak,abyfunkcjafokreślonawzorem ( a 2+e 1/x) dla x<0, ( f(x)= 2+e 1/t) dla x=0, t 0 sinbx dla x>0 x byłaciągłana R 4WyznaczyćfunkcjęFpierwotnąfunkcjif(x)=log 2 xtaką,żef(2)=0 5 Wyznaczyć ekstrema i punkty przegięcia wykresu funkcji f(x) = przedziale(1, ) 6 Korzystając z twierdzenia o trzech ciągach obliczyć granicę ( 1 n n ) n 2 +n 7 Korzystając ze wzoru Maclaurina obliczyć ln 12 z dokładnością 001 x 1 1 2lnt t 3 dtna

15 68 Zestawy zadań z egzaminów 8Parabolęy=x 2 obracamywokółosioyobliczyćobjętośćbryłyv ograniczonej utworzoną w ten sposób powierzchnią oraz płaszczyzną y = 4 Zestaw 17 1 Korzystając z twierdzenia o trzech ciągach obliczyć granicę n 2 3n +2 n cos 2 n 2 Obliczyć całkę nieoznaczoną xcos x 2 dx 3NapisaćwzórTaylorazresztąR 2 dlafunkcjif(x)=e cosx ipunktux 0 =π/2 4 Korzystając z reguły de L Hospitala obliczyć granicę x x2( 2 1/x 2 1/x) 5Znaleźćstycznądowykresufunkcjif(x)= e x +1wpunkcie(0,f(0)) 6ZnaleźćpoleobszaruDograniczonegokrzywymi:y= x 2,y=2 x,y=2ix=0 Sporządzić rysunek 7Znaleźćprzedział,naktórymfunkcjaf(x)= ex 1+x jestrosnącaiwypukławdół 8Znaleźćwszystkieasymptotyfunkcjif(x)= x 1 x2 1 Zestaw 18 1 Obliczyć całkę π 4 0 x 2 sin2xdx 2 Narysować wykres funkcji f: R R, która spełnia wszystkie podane warunki: x f(x)nieistnieje; x 1 f(x)= ; x 1 + f(x)=3; prostay=1 2xjestasymptotąfunkcjifw 3 Wykorzystując różniczkę funkcji obliczyć przybliżoną wartość wyrażenia 4 Obliczyć całkę nieoznaczoną e x dx e 2x Wyznaczyć przedziały monotoniczności, ekstrema oraz granice na krańcach dziedziny funkcji f(x)=xe 1/x Następnie wyznaczyć zbiór wartości tej funkcji

16 Egzamin poprawkowy 69 6ObliczyćpoleobszaruDograniczonegokrzywymi:y= x,y+x 2 =2 7 Korzystając z twierdzenia o trzech funkcjach obliczyć granicę 4 2 n +3 n 8 Obliczyć granicę 5 2 n 3 n x [ex (3 2cosx)] Zestaw 19 ( 1 Obliczyć granicę n2 +2n+1 n +3n+5) 2 dx 2 Obliczyć całkę nieoznaczoną (x 2 +1)x 3NapisaćwzórTaylorazresztąR 2 dlafunkcjif(x)=(lnx) x ipunktux 0 =e 4 Korzystając z reguły de L Hospitala obliczyć granicę (1 cosx) x π 2 1 x π 2 5Znaleźćstycznądowykresufunkcjif(x)=cos 2 xwpunkcie(π/4,f(π/4)) 6ZnaleźćpoleobszaruDograniczonegokrzywymi:y= x,y=2 x 2,x=0 7 Znaleźć przedziały monotoniczności oraz najmniejszą wartość funkcji f(x)= x2 2 4ln(x 3) 8Znaleźćasymptotyukośnefunkcjif(x)=xarcctgx 3 Zestaw 20 1 Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji 2 Obliczyć całkę 4 Obliczyć granicę x 0 + ( x ) dx x 2 +4x+13 f(x)= x (x 1) 3NapisaćwzórMaclaurinazresztąR 4 dlafunkcjif(x)=x 2 e x ( 1 x 1 ) sin2x 5 Obliczyć całkę cos 3 x 2 sinx dx 6 Obliczyć objętość bryły V ograniczonej powierzchnią powstałą przez obrót wokół osioxkrzywejy=x lnx,gdziex [1,e] 7Podaćdefinicjępochodnejfunkcjifwpunkciex 0 Korzystającztejdefinicjiobliczyćpochodnąfunkcjif(x)= 2x+1wpunkciex 0 =4

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Lista 0 wstęp do matematyki

Lista 0 wstęp do matematyki dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

ALGEBRA I GEOMETRIA ANALITYCZNA

ALGEBRA I GEOMETRIA ANALITYCZNA ALGEBRA I GEOMETRIA ANALITYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ALGEBRA I GEOMETRIA ANALITYCZNA Kolokwia i egzaminy Wydanie piętnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2014 Marian

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadania Wydanie dziewiętnaste powiększone GiS Oficyna Wydawnicza GiS Wrocław 6 Marian Gewert Wydział Matematyki Politechnika

Bardziej szczegółowo

Analiza Matematyczna. Lista zadań 10

Analiza Matematyczna. Lista zadań 10 Analiza Matematyczna Lista zadań 10 Zadanie 1 pole figury ograniczonej krzywymi y 2 = 2x, x + y = 1. Zadanie 2 objȩtość bryły V powstałej z obrotu wokół osi Ox powierzchni ograniczonej krzyw a o równaniu

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Zestaw zadań przygotowujących do egzaminu z Matematyki 1

Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 B Nazwa w języku angielskim Mathematical Analysis 1B Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644) LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x . Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka I Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład

Bardziej szczegółowo

Rachunek różniczkowy w zadaniach

Rachunek różniczkowy w zadaniach Rachunek różniczkowy w zadaniach Rachunek różniczkowy w zadaniach Jolanta Dymkowska Danuta Beger Przewodniczący Komitetu Redakcyjnego Wydawnictwa Politechniki Gdańskiej Janusz T. Cieśliński Recenzent

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji 4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Lista 2 - Granica. 2n d) dn = ( 1 1 ) n 2. 2n+1 n; 1+x

Lista 2 - Granica. 2n d) dn = ( 1 1 ) n 2. 2n+1 n; 1+x Lista - Logika. Każde z poniższych twierdzeń wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę): Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Matematyka I Rok akademicki: 2014/2015 Kod: MME-1-106-s Punkty ECTS: 11 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

Wykresy i własności funkcji

Wykresy i własności funkcji Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie

Bardziej szczegółowo

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia) Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Materiały pomocnicze dla studentów do wykładów Opracował (-li): 1 Prof dr hab Edward Smaga dr Anna Gryglaszewska 3 mgr Marta Kornafel 4 mgr Fryderyk Falniowski 5 mgr Paweł Prysak Materiały przygotowane

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach 0. 0.5 n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia

Bardziej szczegółowo

Analiza matematyczna

Analiza matematyczna Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Mathematical analysis

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wykłady z matematyki - Pochodna funkcji i jej zastosowania Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

Teresa Jurlewicz ALGEBRA LINIOWA. Kolokwia i egzaminy. Wydanie siódme uzupełnione. GiS

Teresa Jurlewicz ALGEBRA LINIOWA. Kolokwia i egzaminy. Wydanie siódme uzupełnione. GiS ALGEBRA LINIOWA Teresa Jurlewicz ALGEBRA LINIOWA Kolokwia i egzaminy Wydanie siódme uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 2013 Projekt okładki: IMPRESJA Studio Grafiki Reklamowej Copyright c 2000

Bardziej szczegółowo