"Potęga matematyki polega na pomijaniu wszystkich myśli zbędnych i cudownej oszczędności operacji myślowych. Ernst Mach. IV. Funkcja wykładnicza
|
|
- Bogdan Lech Kowalewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 "Poęga maemayki polega na pomijaniu wszyskich myśli zbędnych i cudownej oszczędności operacji myślowych. Erns Mach IV. Funkcja wykładnicza Def. Funkcją wykładniczą nazywamy funkcję posaci f = a, gdzie a > 0 i. Poęgę o wykładniku wymiernym definiujemy jako aq = a p, gdzie p, q\{0} Kiedy wykładnik poęgę a obliczamy meodą kolejnych przybliżeo biorąc ciąg liczb wymiernych zmierzających do. Prawa działao na funkcjach wykładniczych: a a = a : a a = a ; (a ) = a a 0 = Własności funkcji wykładniczej: f = a jes różnowarościowa dla a rosnąca dla a> malejąca dla 0<a< sała dla a= parzysa dla a= p q
2 D Np. Rozwiąż, D: D = R\, Rozwiąż (-,)\{} < 0 0 < < < 0 0 < <, 0 0 ) ( ) ( 0 ) )( ( 0 5 0, 5 5 8
3 Zadanie:. Rozwiąż: a) + = 9, b) = 6 c) ;. Rozwiąż: 7 a) < ;:, b) 6 ; : ;,, 0,6;,8 c) : + ; > : ; = 0
4 Def. Jeżeli funkcja f: X Y i funkcja g: Y Z, o złożeniem funkcji f i g nazywamy funkcję g f : X Z, aką że: g f () = g(f ) Jeżeli D f ; D g, o D g f = D f. Np. Znajdź obydwa złożenia: f() =, g() = 9 D f =, D g =[9,), D f ; =(0,), D g ; =[0,) f g: g f: Znajdź funkcje składowe dla funkcji: (f g)() = f( g( )) = ;9, D f g = D g (g f)() = g( f( )) = 9, D g f D f h() = f() =, g()= : : Wniosek: Złożenie funkcji ogólnie nie jes przemienne. Tw. Złożenie funkcji jes łączne, zn. h(gf)=(hg)f Dowód: (h(gf))()=h((gf)())=h(g(f()))=(hg)(f())=((hg)f)()
5 Tw. o złożeniu funkcji. Złożenie dwóch funkcji różnowarościowych jes funkcją różnowarościową.. Złożenie dwóch funkcji rosnących lub dwóch funkcji malejących jes funkcją rosnącą.. Złożenie dwóch funkcji, rosnącej i malejącej, jes funkcją malejącą.. Jeżeli funkcja wewnęrzna jes funkcją parzysą o złożenie jes funkcją parzysą. 5. Złożenie dwóch funkcji nieparzysych jes funkcją nieparzysą. 6. Jeżeli funkcja zewnęrzna jes ograniczona, o złożenie jes funkcją ograniczoną. 7. Jeżeli funkcja wewnęrzna jes okresowa, o złożenie dwóch funkcji jes funkcją okresową. Dowód : f, g różnowarościowe g f różnowarościowa g f = g f = g f g f = g y g y > 0 g f = g f g(f ) = g;różnowar. f f;różnowar. = f = y y Dowód : f, g rosnąca < g f g f = g f y y f rosnąca f < f y < y g rosnąca g y < g y analogicznie dla funkcji malejących
6 g f = g y g y < 0 Dowód : f malejąca, g rosnąca < g f g f = g f y y f malejąca f > f y > y g rosnąca g y > g y analogicznie na odwró Dowód : f funkcja parzysa D f : D f f = f h = g f D f = D D : D g f = g f g f = g f g f = g f = g f Dowód 7: D f = D g f f funkcja okresowa T > 0 D f : T D f f T = f D g f : T D g f g f = g f = g(y) g f T = g f T = g f = g(y) g f- okresowa
7 Zadanie: Zbadaj różnowarościowośd i monoonicznośd: a) f = ; : b) f = log(;), c) f = ;log :log 8
8 Def. Funkcję f: X Y nazywamy funkcją wzajemnie jednoznaczną f jes różnowarościowa oraz D f ; =Y. Def. Jeżeli funkcja f: X Y jes funkcją wzajemnie jednoznaczną, o funkcją odwroną do funkcji f nazywamy funkcję f - : Y X, aką że: (f - f)() = (f f - )(y) = y. Wniosek: Jeżeli f - - jes funkcją odwroną do f, o y = f() f - (y) = Dowód: y = f() i = (f - f)() = f - (f()) = f - (y) f - (y) = i ( f f - )(y) = y y = f(f - (y)) y = f() Np. Znajdź funkcję odwroną f = f: R R wzajmnie jednoznaczna y = = y: f ; y = y: z powodu umowy f ; = : f f: R\ y = ; ; = ; ; \ wzajemnie jednoznaczna y: = :y f; = : :
9 Zadanie: Wyznacz funkcje odwrone do danych funkcji oraz podaj dziedziny funkcji odwronych: a) f = + ;, b) f = ;log 5, :log 0, c) f = : + ;8
10 Wniosek: Wykres funkcji odwronej f ; orzymujemy przez przekszałcenie wykresu funkcji f w symerii osiowej względem prosej y=. y = f ; () y=f() Tw. o funkcji odwronej Jeżeli funkcja f:xy jes wzajemnie jednoznaczna, o:. funkcja f ; :YX jes wzajemnie jednoznaczna. jeżeli f jes rosnąca w X, o f ; jes rosnąca w Y. jeżeli f jes malejąca w X, o f ; jes malejąca w Y. Dowód. f ; y = f ; y = y = f = y f ; jes różnowarościowa ; X = D f = D f Dowód. y < y : f = y : f = y f < f f;rosnąca < f ; y < f ; y f ; jes rosnąca.
11 V. Funkcja logarymiczna Def. Funkcją logarymiczną o podsawie a nazywamy funkcję odwroną do funkcji wykładniczej a i oznaczamy f = log a, a a>0. Zauważmy, że dla a a>0 funkcja a :(0,) jes wzajemnie jednoznaczna D f = 0, D ; f =. Własności funkcji logarymicznej: Funkcja f = log a jes: różnowarościowa rosnąca dla a> malejąca dla 0<a< Def. Logarymem o podsawie a z liczby b nazywamy wykładnik poęgi, do jakiej należy podnieśd liczbę a, aby orzymad liczbę b log a b = c a c = b, a,b>0, a.
12 Tw. własności logarymów. log a a = Zał.: a, > 0, a log a = 0 a log a = log a a =. log a + log a y = log a y Zał.: a,, y > 0, a log a log a y = log a y. log a b = b log a Zał.: a, > 0, a, b. log a = log b log b a Zał.: a, b, > 0, a, b 5. log a b = log b a Zał.5: a, > 0, a, b 0 Dowód : log a a = a = a log a = 0 a 0 = log a = b a b = [ a log a = a b = = a b ] log a a = a = a Dowód : Niech: log a = p, log a y = q a p = a q = y. y = a p a q = a p:q p + q = log a y.
13 Np..Rozwiąż log ( 5 + ) - log ( )= D: 5 + > 0 > 0 (, + ) log 5: ; = log 5: ; = 9 5+=9-9 Odp. = 5 D. Rozwiąż log [log 5 ( + )]<0 D: +>0 log 5 + >0 >- +> >- >0 0, + log 5 + < +<5 < D Odp. (0,)
14 . Wyznacz dziedzinę funkcji f = log ( log D f : > 0 log > 0 (-,)(,) > log( 5 + 6) < (-, 5; )(5:,) Odp. D f =(-, 5; )(5:,) ). Zbadaj parzysośd funkcji f = log + log + ; D f = f = log + ; log + = f() Odp. f jes nieparzysa a 5. Oblicz log ab, jeżeli log b aba = Odp. log ab a b = log ab a log ab b = log ab 6. Czy funkcje f()=log i g()=log są równe? Odp. Nie, bo D f =\{0}, a D g =(0,) 7. Uporządkuj: log 8, log 5, log 6 Odp. log 8= = log 7 log 5 < log 8 < log 6 ab = + = 7 a 6
15 Zadanie:. Oblicz: a) log 5 log 5 7 log 5, b) 9 ;log ;log 5, c) log 5 0 : log6, wiedząc, że log 5 = a. Rozwiąż: a) log(log)+log(log -)=,. Rozwiąż: b) log ( ::) log ;0 =, c) log 0,5 log = a) + 5, :log ;log b) log log 5, c) log log 5 5 ; > log 0, (0, 5 ; )
16 VI. Funkcja hiperboliczna Def. Sinusem hiperbolicznym nazywamy funkcję sinh = e ;e Cosinusem hiperbolicznym nazywamy funkcję cosh = e :e Tangensem hiperbolicznym nazywamy funkcję gh = e ;e e :e Coangensem hiperbolicznym nazywamy funkcję cgh = e :e e ;e f()=sinh f()=cosh f()=gh f()=cgh
17 Własności Funkcja sinh cosh gh cgh Dziedzina \{0} Zbiór warości [,] [-,] (-,-) (,) Monoonicznośd Rosnąca Rosnąca w [0,) Malejąca w (-,0] Rosnąca Rosnąca w (0,) Malejąca w (-,0) Różnowarościo Różnowarościowa Różnowarościowa w Różnowarościowa Różnowarościowa w wośd [0,) i (-,0] (0,) (-,0) Parzysośd nieparzysa parzysa nieparzysa nieparzysa Okresowośd nie jes okresowa nie jes okresowa nie jes okresowa nie jes okresowa Wzory dla funkcji hiperbolicznych:. cos sin =, g = sin cos, cg =, gcg = cos sin. cosh ± y = coscosy ± sinsiny, sinh ± y = sincosy ± cossiny. cos = cos + sin, sin = sincos Np. Rozwiąż sinh+sinh 0 e e ; + e e ; 0 / e e e + e 0, = e ( )( + ) 0 - e e Odp. [0, )
18 Zadanie: a) wyznacz wzór funkcji odwronej do cosh dla >0, b) rozwiąż cgh-gh >, c) wyznacz dziedzinę funkcji f = log g (cg )
"Potęga matematyki polega na pomijaniu wszystkich myśli zbędnych i cudownej oszczędności operacji myślowych." Ernst Mach. Funkcja wykładnicza
"Poęga maemaki polega na pomijaniu wszskich mśli zbędnch i cudownej oszczędności operacji mślowch." Erns Mach Funkcja wkładnicza Def. Funkcją wkładniczą nazwam funkcję posaci f = a, gdzie a > i. Poęgę
Ekoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Ekoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY będą niepuste. Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy przyporządkowanie
1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
7. Funkcje elementarne i ich własności.
Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Funkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu
Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska
Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.
FUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007
Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:
W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:
dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.
O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych
TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Roger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje
Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje
Roger Bacon Def. Def. Def. Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Ciągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą
Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Rozdział 3. Granica i ciągłość funkcji jednej zmiennej
Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
4. Granica i ciągłość funkcji
4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Rozdział 2. Funkcje jednej zmiennej rzeczywistej
Rozdział. Funkcje jednej zmiennej rzeczywistej. Rodzaje funkcji elementarnych Kiedy mamy do czynienia z pojęciem funkcji? Każdy używany samochód ma swój nr rejestracyjny. Oczywiście niektóre tablice rejestracyjne
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Funkcje hiperboliczne
Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x
3.Funkcje elementarne - przypomnienie
3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje
Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część druga Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 GRANICA I CIĄGŁOŚĆ FUNKCJI Granica funkcji Funkcja f: R A R ma w punkcie x 0 granicę g wtedy i tylko wtedy gdy dla każdego ciągu
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.
Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile
Troszkę przypomnienia
Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Podstawy nauk przyrodniczych Matematyka Wstęp
Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
S n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
FUNKCJE. 1. Podstawowe definicje
FUNKCJE. Podstawowe definicje DEFINICJA. Funkcja f odwzorowującą zbiór X w zbiór Y (inaczej f : X Y ) nazywamy takie przyporządkowanie, które każdemu elementowi x X przyporządkowuje dokładnie jeden element
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3 Ciągi liczbowe Definicja Dowolną funkcję a: N R nazywamy ciągiem liczbowym. Uwaga Ze względu na tradycję tym
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Zadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:
1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
II. Wstęp: Funkcje elementarne - część 2
II. Wstęp: Funkcje elementarne - część 2 Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet EkonomicznyII. wwstęp: Krakowie) Funkcje elementarne - część 2 1 / 34 1
SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji
SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:
Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Funkcja f jest ograniczona, jeśli jest ona ograniczona z
FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Ciągłość funkcji w punkcie i w zbiorze.
(Scenariusz lekcji o wprowadzeniu pojęcia ciągłości funkcji w punkcie, w zbiorze CFX9859GB PLUS) Ciągłość funkcji w punkcie i w zbiorze. Cele: poznawczy - poznanie pojęć: ciągłość funkcji w punkcie, w
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Zadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym