Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007
|
|
- Ignacy Nowacki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007
2 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania: dodawanie C = {z = (x, y): x, y R}, (1) z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 ) = df (x 1 + x 2, y 1 + y 2 ) (2) mnożenie z 1 z 2 = (x 1, y 1 ) (x 2, y 2 ) = df (x 1 x 2 y 1 y 2, x 1 y 2 + x 2 y 1 ) (3) Elementy zbioru C z tak określonymi działaniami nazywamy liczbami zespolonymi. Liczby zespolone 2
3 Liczby rzeczywiste Zauważmy, że liczby zespolone postaci (x, 0) dodaja się i mnoża tak, jak liczby rzeczywiste: (x 1, 0) + (x 2, 0) = (x 1 + x 2, 0 + 0) = (x 1 + x 2, 0) (4a) (x 1, 0) (x 2, 0) = (x 1 x 2 0 0, x x 2 0) = (x 1 x 2, 0) (4b) Wobec tego liczby zespolone postaci (x, 0) będziemy utożsamiać z liczbami rzeczywistymi x. Liczby zespolone 3
4 Liczby urojone Obliczmy teraz (0, 1) 2. (0, 1) 2 = (0, 1) (0, 1) = ( , ) = ( 1, 0) (5) Liczbę zespolona ( 1, 0) utożsamiliśmy z liczba rzeczywista 1. Oznaczmy (0, 1) = i (6) Mamy zatem i 2 = 1 (7) Liczby zespolone postaci (0, x) nazywamy liczbami urojonymi. Kwadraty liczb urojonych sa ujemnymi liczbami rzeczywistymi. Liczby zespolone 4
5 Tradycyjna reprezentacja liczb zespolonych Liczbę zespolona z = (x, y) C najczęściej przedstawia się w postaci z = x + iy, x, y R (8) Jeśli z = x + iy, x = Re z nazywa się częścia rzeczywista, natomiast y = Im z nazywa się częścia urojona liczby zespolonej z. z = (Re z) + i(im z). Takie przedstawienie jest zgodne z podana definicja mnożenia: Niech z 1 = x 1 + iy 1, z 2 = x 2 + iy 2. Wówczas z 1 z 2 = (x 1 + iy 1 )(x 2 + iy 2 ) = x 1 x 2 + i(x 1 y 2 + x 2 y 1 ) + i 2 y 1 y 2 = x 1 x 2 y 1 y 2 + i(x 1 y 2 + x 2 y 1 ). (9) Liczby zespolone 5
6 Liczby zespolone tworza ciało 1. Dodawanie jest łaczne: z 1, z 2, z 3 C: (z 1 + z 2 ) + z 3 = z 1 + (z 2 + z 3 ) = z 1 + z 2 + z Istnieje element neutralny dodawania: z C: z + 0 = 0 + z = z, gdzie 0 (0, 0) C. 3. Istnieje element odwrotny względem dodawania: z C z C: z + ( z) = z + z = Mnożenie jest łaczne: z 1, z 2, z 3 C: (z 1 z 2 ) z 3 = z 1 (z 2 z 3 ) = z 1 z 2 z Istnieje element neutralny mnożenia: z C: z 1 = 1 z = z, gdzie 1 (1, 0) C. 6. Istnieje element odwrotny względem mnożenia: z = C, z 0 z 1 C: z z 1 = z 1 z = Mnożenie jest rozdzielne względem dodawania: z 1, z 2, z 3 C: z 1 (z 2 + z 3 ) = z 1 z 2 + z 1 z 3. Liczby zespolone 6
7 Ponadto 8. Dodawanie jest przemienne: z 1, z 2 C: z 1 + z 2 = z 2 + z Mnożenie jest przemienne: z 1, z 2 C: z 1 z 2 = z 2 z 1. Mówimy, że liczby zespolone wraz z określonymi na nich działaniami tworza ciało przemienne. Uwaga! W ciele liczb zespolonych nie jest określona naturalna relacja porzadkuj aca. Jeśli z 1, z 2 C, napisy z 1 < z 2, z 1 > z 2 w ogólności nie maja sensu! Liczby zespolone 7
8 Równość liczb zespolonych Równość liczb zespolonych oznacza jednoczesna równość ich części urojonych i rzeczywistych. Przykład 1 x + iy = 2 + 3i x = 2, y = 3. Przykład 2 Znaleźć liczby rzeczywiste a, b, takie, że a(2 + 3i) + b(4 5i) = 6 2i. Porzadkuj ac wyrazy po lewej stronie znajdujemy 2a + 4b + i(3a 5b) = 6 2i, a zatem otrzymujemy układ równań (Rozwiazaniem jest a = 1, b = 1.) 2a + 4b = 6 3a 5b = 2 Liczby zespolone 8
9 Moduł i sprzężenie zespolone Niech z = (x, y) = x + iy C. Modułem liczby z nazywam liczbę rzeczywista z = x 2 + y 2. Liczba sprzężona do z nazywam liczbę zespolona z = z = x iy. Zauważmy, że z z = (x + iy)(x iy) = x 2 (iy) 2 = x 2 + y 2 = z 2 oraz z = z. Przykład z = 3 + 4i, z = = = 25 = 5, z = 3 4i. Liczby zespolone 9
10 Przykłady 1. Usunać część urojona z mianownika i znaleźć moduł liczby u = i. Rozwiazanie: u = i = i 1 2i 1 2i = 1 2i = 1 5 i2 5. u = 1/25 + 4/25 = 5/25 = 1/ Obliczyć v = ( ) i. Rozwiazanie: 2 v = ( ( 1 + i 2 ) 2 ) 2 = ( ) 2 1 2i 1 = ( i) 2 = 1. 2 Liczby zespolone 10
11 Interpretacja geometryczna liczb zespolonych Liczby zespolone pary liczb rzeczywistych odpowiadaja punktom na płaszczyźnie zespolonej. Im z z = x + iy z y φ x Re z z * = x - iy Liczby zespolone 11
12 Przykłady Znajdź miejsca geometryczne odpowiadajace następujacym zbiorom liczb zespolonych: 1. z = 2. (Odpowiedź: Okrag o promieniu 2 i środku w punkcie (0, 0).) 2. z 2i < 9/16. (Odpowiedź: Wnętrze okręgu o promieniu 9/16 i środku w punkcie (0, 2).) 3. z 1 + z + 1 = 3. Rozwiazanie: Oznaczajac z = x + iy, otrzymujemy (x 1) 2 + y 2 + (x + 1) 2 + y 2 = 3 Ponieważ a + b = c 4ab = (c 2 a b) 2, mamy 4 [ (x 1) 2 + y 2] [ (x + 1) 2 + y 2] = ( 9 (x 1) 2 y 2 (x + 1) 2 y 2) 2. Upraszczajac to wyrażenie, otrzymujemy ostatecznie równanie elipsy 20x y 2 = 45. Liczby zespolone 12
13 Postać trygonometryczna liczb zespolonych Niech z = x + iy 0. Przywołujac interpretację geometryczna liczb zespolonych, widzimy, że x z = cos φ, y = sin φ. (10) z Innymi słowy, z = z (cos φ + i sin φ). (11) Liczbę φ nazywamy argumentem (lub faza) liczby zespolonej i oznaczamy φ = arg z. Argument nie jest określony jednoznacznie: z uwagi na okresowość funkcji trygonometrycznych, jeśli φ jest argumentem jakiejś liczby zespolonej, także wszystkie liczby postaci φ + 2nπ, n Z, sa jej argumentami. Argument liczby zespolonej należacy do przedziału [0, 2π) nazywamy argumentem głównym i oznaczamy Arg z. Liczby zespolone 13
14 Wzór de Moivre a e iφ = cos φ + i sin φ. (12) z = z e iφ = z (cos φ + i sin φ), φ R. (13) Uzasadnienie: Dla liczby zespolonej z, funkcję wykładnicza definiujemy poprzez rozwinięcie Taylora: Wobec tego e iφ = n=0 (iφ) n n! = m=0 (iφ) 2m (2m)! + m=0 e z = n=0 z n (iφ) 2m+1 (2m + 1)! = n!. (14a) m=0 φ2m ( 1) m (2m)! + i m=0 φ2m+1 ( 1) m (2m + 1)! = cos φ + i sin φ. (14b) Liczby zespolone 14
15 Przykłady 1. arg 1 = 2kπ, k Z. 2. arg( 5) = π + 2kπ = (2k + 1)π, k Z. 3. Arg ( 5) = π. 4. arg(1 + i) = π/4 + 2kπ, k Z. 5. Arg ( 7i) = 3π/2. 6. Dla ψ R, e iψ = cos ψ + i sin ψ = cos 2 ψ + sin 2 ψ = Dla m Z, z 0 dostajemy z m = ( z e iφ) m = z m e imφ = z m (cos mφ + i sin mφ). Liczby zespolone 15
16 Przykład ( ) 1 + i 7 Obliczyć w = 1 + i. 3 Rozwiazanie: w = (p/q) 7 = p 7 /q 7 p = 1 + i = 2e iπ/4 = 2 1/2 e iπ/4 ( 1 p 7 = 2 7/2 e i7π/4 = 2 7/2 e iπ/4 = 2 7/2 2 i 1 ) = 2 3 (1 i) 2 ) q = 1 + i 3 = 2e iπ/3 ( q 7 = 2 7 e i7π/3 = 2 7 e iπ/3 = 2 7 ( i w = 23 (1 i) 2 6 (1 + i 3) = 1 1 i i 3 = 1 8 = 1 32 cos π 3 = 1 2, sin π 3 3 = 2 ) 3 = 2 6 (1 + i 3) 2 (1 i)(1 i 3) (1 + i 3)(1 i 3) = 1 8 [ 1 3 i(1 + 3) ]. 1 i 3 i Liczby zespolone 16
17 Pierwiastkowanie liczb zespolonych Całkowite potęgi liczb zespolonych oblicza się tak samo, jak całkowite potęgi liczb rzeczywistych. Jeśli wykładnik nie jest całkowity, obliczenia przebiegaja inaczej. Na poczatek rozważmy potęgi o wykładnikach rzeczywistych, wymiernych. Niech z = z e iφ z e iφ+2inπ C. Niech r, s Z. z r/s = df z r/s e irπ/s+2inrπ/s, n Z (15) Wzór (15) określa cała rodzinę liczb, nie pojedyncza liczbę! Dla r, s, n Z, wyrażenie e 2inrπ/s jest okresowe, a więc wzór (15) określa skończony zbiór liczb. Liczby zespolone 17
18 Przykłady 1 = e 2inπ. 1 1/k określa k-ty pierwiastek z jedności. Dostajemy 1 1/k = e 2ilπ/k dla l = 0, 1,..., k 1. Przykład: Jako czwarte pierwiastki z jedności otrzymujemy e 0 = 1, e 2iπ/4 = i, e 4iπ/4 = 1, e 6iπ/4 = i. Przykład: Ile niezależnych liczb dostaniemy obliczajac z 2/3? z 2/3 = z 2/3 e 2iφ/3 e 4inπ/3. Zatem n = 0: z 2/3 e 2iφ/3. n = 1: z 2/3 e 2iφ/3 e 4iπ/3. n = 2: z 2/3 e 2iφ/3 e 8iπ/3. n = 3: z 2/3 e 2iφ/3 e 12iπ/3 = z 2/3 e 2iφ/3 e 4iπ = z 2/3 e 2iφ/3. Otrzymujemy zatem trzy niezależne pierwiastki (dla n = 0, 1, 2). Liczby zespolone 18
19 Przykład piate pierwiastki z jedności W ogólności pierwiastki rzędu k z jedności leża w wierzchołkach k-kata foremnego. Liczby zespolone 19
20 Potęgi o wykładnikach niewymiernych Potęgi o zespolonych podstawach i wykładnikach rzeczywistych, niewymiernych, definiujemy analogicznie do potęg o wykładnikach wymiernych. Jeżeli z = z e iφ C, α IQ, to z α = df z α e iαφ+2inαπ, n Z. (16) W odróżnieniu od wyrażenia (15), wyrażenie (16) definiuje rodzinę nieskończenie wielu liczb zespolonych. Dzieje się tak dlatego, że dla niewymiernego α, e 2inαπ nie jest okresowe przy zmianie n Z. Liczby zespolone 20
21 Logarytm zespolony Dodawanie, mnożenie i potęgowanie (z dowolnymi wykładnikami rzeczywistymi) liczb zespolonych było zdefiniowane tak, aby operacje te dla liczb rzeczywistych zachowywały się w znany sposób. Nie inaczej jest z logarytmowaniem: a zatem (z 0) p = ln q q = e p (17) z = z e iφ = e ln z +iφ+2inπ log z = ln z + iφ + 2inπ, n Z (18) Logarytm zespolony jest zatem określony jako rodzina nieskończenie wielu liczb. Jeśli przyjmiemy n = 0 oraz jeśli φ [0, 2π), dostaniemy tak zwana gałaź główna logarytmu, Log z = ln z + iφ, ale jest to wybór arbitralny równie dobrze moglibyśmy wziać jakiekolwiek inne n całkowite. Przykłady: Log i = iπ/2, Log( 1) = iπ, log(1 + i) = ln 2 + iπ/4 + 2inπ, n Z. Liczby zespolone 21
22 Potęgi o wykładnikach zespolonych Dla liczb rzeczywistych zachodzi (x > 0) Wobec tego definiujemy (z 0) x y = ( e ln x) y = e y ln x z w = df e w log z (19) Poza przypadkiem, gdy w jest liczba rzeczywista, całkowita, powyżej zdefiniowana operacja jest niejednoznaczna określa wiele (niekiedy nieskończenie wiele) liczb zespolonych. Liczby zespolone 22
23 Przykład i i = e i log i = e i(iπ/2+2inπ) = e π/2 e 2nπ Operacja i i określa rodzinę liczb rzeczywistych. Jeśli ograniczymy się do gałęzi głównej logarytmu, dostaniemy i i = e π/ Liczby zespolone 23
24 Inny przykład Obliczmy sin i. W tym celu zauważmy, że 1/e = e 1 = e i i = cos i + i sin i (20a) e = e 1 = e i i = cos i i sin i (20b) Odejmujac te równania stronami otrzymujemy e 1 e = 2i sin i, a stad sin i = e e 1 i = i sinh 1. (21) 2 Zauważmy, że sin i > 1 (Natomiast cos i = (e + e 1 )/2 = cosh > 1 jest liczba rzeczywista.) Liczby zespolone 24
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1
LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Dr Maciej Grzesiak, Instytut Matematyki
liczbowe Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.maciej.grzesiak.pracownik.put.poznan.pl podręcznik: i algebra liniowa
Wykłady z matematyki Liczby zespolone
Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:
Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008
Liczby zespolone Katarzyna Grabowska Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki Letnia Szkoła Fizyki, Płock 2008 Katarzyna Grabowska (KMMF) Liczby zespolone LSF2008 1 /
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
http://www-users.mat.umk.pl/~pjedrzej/matwyz.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego i opanowanie przez nich podstawowych pojęć dotyczących
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Kurs wyrównawczy - teoria funkcji holomorficznych
Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)
Kolorowa płaszczyzna zespolona
Kolorowa płaszczyzna zespolona Marta Szumańska MIMUW/IX LO w Warszawie Sielpia, 27 października 2018 p. 1 of 64 Liczby zespolone Przez i oznaczamy jednostkę urojoną. Jest to obiekt spełniający warunek
Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki
Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach
Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17
41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m
Matematyka w Instytucie Akustyki. Maciej Radziejewski
Matematyka w Instytucie Akustyki Maciej Radziejewski Prowadzący: Dr Maciej Radziejewski Zakład Algebry i Teorii Liczb, Wydział Matematyki i Informatyki UAM p. B2-10 (ew. B2-46). WWW: http://matematykaaku.weebly.com
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez
Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Matematyczne Metody Fizyki I
Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Algebra liniowa i geometria analityczna. Autorzy: Agnieszka Kowalik Michał Góra
Algebra liniowa i geometria analityczna Autorzy: Agnieszka Kowalik Michał Góra 9 Spis treści Liczby zespolone Postać algebraiczna liczby zespolonej Moduł i argument liczby zespolonej Postać trygonometryczna
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
KURS LICZB ZESPOLONYCH
KURS LICZB ZESPOLONYCH Lekcja 2 Równania zespolone. Pierwiastki drugiego stopnia liczone w postaci kartezjańskiej. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).
Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Funkcje hiperboliczne
Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Funkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),
Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
II. Wstęp: Funkcje elementarne - część 2
II. Wstęp: Funkcje elementarne - część 2 Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet EkonomicznyII. wwstęp: Krakowie) Funkcje elementarne - część 2 1 / 34 1
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Algebra liniowa z geometria
Algebra liniowa z geometria Materiały do ćwiczeń Zespół matematyków przy WEEiA Spis treści 1 Macierze i wyznaczniki 5 11 Macierze i ich rodzaje 5 12 Operacje na macierzach 6 13 Wyznacznik macierzy 8 14
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Dodatek Matematyczny LICZBY ZESPOLONE
24.09.2017 Dodatek Matematyczny D LICZBY ZESPOLONE 1. Wprowadzenie Liczby zespolone straszą swoją egzotyką. I choć działać mogą odstraszająco, to ich pojawienie się wprowadziło do matematyki wiele ładu.
Lista 1 - Funkcje elementarne
Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)
Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne
Grupy i cia la, liczby zespolone
Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Matura próbna matematyka poziom rozszerzony
Matura próbna matematyka poziom rozszerzony Zadanie 1 (1pkt) Jaki jest zbiór wartości funkcji f(x) = 5 cos x 1, jeśli x π, π? 4 (a) 0, + //gdy pominie przedział na x i policzy dla x R (b) 0, 7 + //prawidłowa
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H 1. Niech A = {(x, y) R R : 3 x +4 x = 5 y } będzie zbiorem rozwiązań równania 3 x +4 x = 5 y w liczbach rzeczywistych. Wówczas zbiór A i zbiór N N mają
LUBELSKA PRÓBA PRZED MATURA
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI LUBELSKA PRÓBA PRZED MATURA DLA KLAS TRZECICH POZIOM PODSTAWOWY GRUPA I 1 STYCZNIA 011 CZAS PRACY: 170 MINUT Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Skąd się biorą i jak należy rozumieć liczby zespolone
Skąd się biorą i jak należy rozumieć liczby zespolone Ryszard Rębowski 27 października 2016 1 Wstęp Zbiór liczb rzeczywistych R ma ważną w zastosowaniach, dobrze znaną własność każde dwie liczby rzeczywiste