Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)"

Transkrypt

1 Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika Slatera Do wyrażenia: ε = Φ ĤΦdτ Φ Φdτ E 0 (1) podstawiamy operator Ĥ dla danego uk ladu wieloelektronowego i funkcj e Φ w postaci wyznacznika Slatera Jak znaleźć najlepsze orbitale, z których skonstruowana jest funkcja Φ w postaci wyznacznika Slatera? (dla zainteresowanych wyprowadzenie: np. PWN 007, Uz. 6.4, str ) W. Ko los, J.Sadlej, Atom i czasteczka, Dla atomu helu: ϕ 1 = ψ 1 α, ϕ = ψ 1 β, gdzie ψ = ψ(x 1, y 1, z 1 )=ψ 1 (1) (orbital atomowy). Taki sam orbital może opisywać drugi elektron: ψ 1 (x, y, z ) =ψ 1 () Równanie różniczkowo-ca lkowe określajace optymalne orbitale Równanie Focka: Dla helu: 1 orbital ˆF (1)ψ 1 (1) = ε 1 ψ 1 (1) () ˆF - operator Focka ˆF (1) = 1 1 r 1 + V ee (1) (3) V ee (1) potencja l pochodzacy od oddzia lywania z drugim elektronem (opisywanym przez taki sam orbital ψ 1 ) V ee (1) = J 1 (1) K 1 (1) (4) Ogólna definicja operatorów Ĵq(1) i ˆKq (1): Ĵ q (1)ψ p (1) = [ ψq () 1 ψ q ()dτ]ψ p (1) (5) r 1 operator kulombowski operator wymienny ˆK q (1)ψ p (1) = [ ψ q () 1 r 1 ψ p ()dτ]ψ q (1) (6)

2 Ograniczona metoda Hartree-Focka - RHF (Restricted Hartree- Fock) Rozważamy uk lady z parzysta liczba elektronów (prostsze równania). Dla neonu n=10. Potrzeba 10 spinorbitali. Można je utworzyć z 5 orbitali: ϕ 1 = ψ 1 α, ϕ = ψ 1 β, ϕ 3 = ψ α, ϕ 4 = ψ β, ϕ 5 = ψ 3 α, ϕ 6 = ψ 3 β, ϕ 7 = ψ 4 α, ϕ 8 = ψ 4 β, ϕ 9 = ψ 5 α, ϕ 10 = ψ 5 β, Dla uk ladu n-elektronowego - n/ orbitali. (W równaniu Focka wystepuj a wspó lrzedne jednego elektronu, tu przyk ladowo 1) ˆF (1)ψ p (1) = ε p ψ p (1) p = 1,, 3, 4, 5 (7) ˆF (1) = r 1 + ˆV ee (1) (8) ˆV ee (1) operator odpowiadajacy energii potencjalnej elektronu w statycznym uśrednionym polu wytworzonym przez pozosta le elektrony (z których każdy opisywany jest przez orbital) ˆF (1)ψ p (1) = ε p ψ p (1) (9) ψp (1) ˆF (1)ψ p (1)dτ 1 = ε p ψp (1)ψ p(1)dτ 1 (10) ε p = ψp(1)( 1 1)ψ p (1)dτ 1 ψp(1) ψ p (1)dτ 1 + r 1 ψ p(1) ˆV ee ψ p (1)dτ 1 (11) ε p - efektywna energia elektronu opisywanego orbitalem ψ p ˆV ee zawiera operatory: kulombowskie Ĵq i wymienne ˆK q Operator kulombowski wk lady postaci: ψ p (1)ψ p(1) 1 r 1 ψ q ()ψ q()dτ 1 dτ (1) odpychanie elektronów opisywanych przez orbitale ψ p i ψ q wk lady pochodzace od operatora ˆK q nie wystepuj a w oddzia lywaniu ladunków klasycznych

3 Energia ca lkowita w metodzie Hartree-Focka E HF : E HF p ε p (13) Energia ca lkowita NIE JEST RÓWNA sumie energii orbitalnych odpowiadaj acych orbitalom obsadzonym przez elektrony Suma energii orbitalnych - podwójne liczenie oddzia lywania mi edzy elektronami E HF = p ε p E ee (14) gdzie E ee - wk lad do energii pochodzacy od oddzia lywania miedzy elektronami Jak rozwiazać: ˆF (1)ψ p (1) = ε p ψ p (1) równanie pseudow lasne Operator Focka ˆF zależy od orbitali ψ p, czyli od szukanych rozwiazań równania! Metoda iteracyjna rozwiazywania równania Focka START - przybliżone orbitale ( byle jakie ) 1. zbudowanie operatora Focka z orbitali obsadzonych. rozwiazanie równania Focka orbitale (lepsze) 3. wybranie orbitali obsadzonych (niskie energie orbitalne) 4. sprawdzenie, czy energia ca lkowita uleg la istotnemu obniżeniu: TAK - powrót do punktu 1 NIE - KONIEC Metoda pola samouzgodnionego SCF (Self Consistent Field) 3

4 Orbitale atomowe: ˆF (1)ψ p (1) = ε p ψ p (1) (15) - cześć katowa jak dla atomu wodoru (symetria sferyczna) - cz eść przestrzenna inna niż dla atomu wodoru ε p - energia orbitalna zależność od n i od l Metody: numeryczne rozwiazanie równania obliczanie analitycznych przybliżeń do orbitali ψ p = m c pi χ i, (16) i=1 gdzie χ i tzw. funkcje bazy, c pi -poszukiwane wspó lczynniki (metoda Hartree- Focka- Roothaana) Energia orbitalna ε p - interpretowana jako energia elektronu poruszajacego sie w polu adra i uśrednionym polu potencja lu pozosta lych elektronów j Można interpretować ε p jako energie elektronu w atomie, ale jest to pojecie wynikajace z przyjecia przybliżenia jednoelektronowego. Nie istnieje żadna metoda doświadczalna pozwalajaca na dok ladne wyznaczenie energii określonego elektronu w atomie (lub innym uk ladzie wieloelektronowym). Energia jonizacji: E jonizacji = E jonu E atomu E jonizacji,p - energia potrzebna do oderwania od atomu elektronu opisywanego przez orbital ψ p Twierdzenie Koopmansa E jonizacji,p ε p 4

5 Metoda RHF - uk lady zamkni etopow lokowe Uk lady otwartopow lokowe: Metoda ROHF (Restricted Open-Shell Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ α, ψ β, ψ 3 α, gdzie ψ i oznacza orbital Metoda UHF (Unrestricted Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ α, ψ β, ψ 3 α, różne orbitale dla różnych spinów Sens fizyczny (interpretacja statystyczna) - tylko kwadrat modu lu funkcji falowej opisujacej wszystkie elektrony danego atomu. Opis stanu uk ladu wieloelektronowego za pomoca (nawet najlepszej) funkcji Hartree- Focka energia uk ladu obarczona b l edem wynikajacym z zastosowania przybliżenia jednoelektronowego E kor = E HF E dokladna Energia korelacji - b l ad pope lniany, gdy energia jest obliczana za pomoca najlepszej funkcji Hartree-Focka (E HF ) Przybliżenie jednoelektronowe pozwala wyrazić strukture elektronowa atomu za pomoca jego konfiguracji, czyli przyporzadkowania elektronów orbitalom (zgodnie z zakazem Pauliego). Konfiguracja atomu w stanie podstawowym. Na przyk lad, dla atomu He: 1s Konfiguracja atomu w stanie wzbudzonym. Na przyk lad, dla atomu He w jednym ze stanów wzbudzonych: 1s 1 s 1 5

6 Trzeba rozważać energi e (stan) atomu wieloelektronowego jako ca lości. Atom He w jednym ze stanów wzbudzonych: 1s 1 s 1 1 Ψ = 1 [ψ 1s(1) ψ s () + ψ s (1) ψ 1s ()][α(1) β() β(1) α()] (17) singlet 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()]α(1) α() (18) 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()][α(1) β() + β(1) α()] (19) 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()]β(1) β() (0) 3 Ψ tryplet (3 funkcje falowe) 6

7 Oznaczenia: ψ 1s jako 1s, ψ s jako s Funkcja falowa dla singletu 1 Ψ = 1 [1s(1) s() + s(1) 1s()][α(1) β() β(1) α()] (1) 1 Ψ = 1 [1s(1)α(1)s()β() + s(1)α(1)1s()β() () 1s(1)β(1)s()α() s(1)β(1)1s()α()] (3) = 1 ( 1s(1)α(1) 1s()α() s(1)β(1) s()β() (4) 1s(1)β(1) 1s()β() s(1)α(1) s()α() ) == 1 (W 1 W ) (5) Jedna z funkcji falowych dla trypletu (M S =0, wartość rzutu wypadkowego spinu na wyróżniony kierunek wynosi 0) 3 Ψ = 1 [1s(1) s() s(1) 1s()][α(1) β() + β(1) α()] (6) 1 Ψ = 1 [1s(1)α(1)s()β() s(1)α(1)1s()β() (7) +1s(1)β(1)s()α() s(1)β(1)1s()α()] (8) = 1 ( 1s(1)α(1) 1s()α() s(1)β(1) s()β() + (9) 1s(1)β(1) 1s()β() s(1)α(1) s()α() ) == 1 (W 1 + W ) (30) Zatem, te same konfiguracje (wyznaczniki) pojawiaja sia dla różnych stanów wzbudzonych (tu zarówno dla stanu singletowego jak dla trypletowego atomu helu). Funkcja falowa w postaci jednego wyznacznika nie nadaje si e do opisu stanu uk ladu otwartopow lokowego, dla którego wyst epuje pojedyncze obsadzenie wi ecej niż jednego orbitalu, a spin ca lkowity jest niższy niż najwyższy możliwy dla danej konfiguracji. Metoda UHF (Unrestricted Hartree-Fock; jeden wyznacznik - różne orbitale dla różnych spinów) może prowadzić do niefizycznych stanów, które nie maja określonej wartości ca lkowitego spinu. 7

8 Cz eści przestrzenne funkcji falowej dla stanów wzbudzonych 1 S (singlet) i 3 S (tryplet) atomu helu można w przybliżeniu przedstawić jako: Ψ sing = 8 ( e ( r 1) [1 r ]e ( r ) + e ( r ) [1 r 1 ]e ( r 1) ) Ψ trip = 8 ( e ( r 1) [1 r ]e ( r ) e ( r ) [1 r 1 ]e ( r 1) ) Interesuje nas prawdopodobieństwo znalezienia elektronu w określonej odleg lości r od jadra (dla elektronu 1 (r 1 ) i (r )) Po wykonaniu wykresów: (r 1 r Ψ sing ) (r 1 r Ψ trip ) widać wyraźnie, że rozk lad g estości elektronowej jest inny dla singletu i dla trypletu. Oddzia lywanie elektrostatyczne elektronów zależy od ich spinów (rozk lad g estości elektronowej zależy od spinów elektronów) Konfiguracja elektronowa nie określa stanu atomu wieloelektronowego. Co należy uwzgl ednić, żeby określić stan atomu? Energia odpychania elektronów o takich samych wartościach rzutu spinu na wyróżniony kierunek w przestrzeni jest mniejsza niż energia odpychania elektronów o przeciwnych wartościach rzutu spinu. Moment magnetyczny zwiazany ze spinem elektronu. Moment magnetyczny zwiazany z orbitalnym momentem pedu elektronu. Oddzia lywanie momentów magnetycznych spinowego i orbitalnego - sprz eżenie spinowo-orbitalne. Wielkość sprz eżenia spinowo-orbitalnego zależy od wzgl ednej orientacji momentów magnetycznych spinowego i orbitalnego, czyli od wzgl ednej orientacji tych dwóch momentów p edu Ustawienie równoleg le orbitalnego momentu p edu i spinu elektronu - niekorzystne (duża energia) Ustawienie antyrównoleg le orbitalnego momentu p edu i spinu elektronu - korzystne (ma la energia) Ważna wzgl edna orientacja orbitalnego momentu p edu i spinu - można pos lużyć si e ca lkowitym momentem p edu elektronu (wektorowa suma orbitalnego momentu p edu i spinu)- liczby kwantowe: j, m j 8

9 Konfiguracja elektronowa a stan atomu wieloelektronowego każdy elektron w atomie wieloelektronowym opisany przez spinorbital (n, l, m,m s ) odpychanie miedzy elektronami zależy od ich spinów, ruchy elektronów sa skorelowane, a elektrony nierozróżnialne - liczby kwantowe l i s opisujace orbitalny moment pedu i spin pojedynczego elektronu musza być zastapione przez L i S, które opisuja ca lkowity orbitalny moment pedu i ca lkowity spin sprz eżenie spinowo-orbitalne - zależność od ca lkowitego momentu p edu (sprz eżenie L-S, Russella-Saundersa) Zak ladamy, że kolejne efekty coraz mniejsze (s luszne dla atomów, dla których liczba atomowa < 0). Wielkość sprz eżenia spinowo-orbitalnego rośnie z Z 4. Dla ci eżkich atomów efekt trzeci (sprz eżenie spinowo-orbitalne) wi ekszy niż drugi (zależność odpychania elektronów od ich spinu) - sprz eżenie j-j Symbol termu: L -liczba kwantowa ca lkowitego orbitalnego momentu p edu Duże litery S, P, D, F, itd. dla L=0, 1,, 3, itd. S+1 - multipletowość; S - liczba kwantowa ca lkowitego spinu Przyk lad: 3 P tryplet P Poziomy energetyczne dla danego termu: S+1 L (31) S+1 L J (3) J - liczba kwantowa ca lkowitego momentu p edu (sumy ca lkowitego orbitalnego momentu p edu i ca lkowitego spinu) Przyk lad: P 3 (33) 9

10 Dodawanie momentów p edu w mechanice kwantowej Jeśli moment pedu określony przez liczbe kwantowa d zosta l otrzymany w wyniku dodania dwóch momentów pedu, określonych przez liczby kwantowe d 1 i d, to możliwymi wartościami d sa: d 1 + d, d 1 + d 1, d 1 + d,... d 1 d (wzór Clebscha-Gordana) Na przyk lad: l 1 =3 l =1, to L=4,3, s 1 = 1, s = 1, S=1,0 Ustalanie termu dla danej konfiguracji: Dla zamkni etej pow loki zawsze 1 S stan podstawowy atomu H: 1s 1 (l=0, s=1/, j=1/) term S, jeden poziom S 1 sód: [Ne]3s 1 (l=0, s=1/, j=1/) term S, jeden poziom S 1 [Ne]3p 1 (l=1 s=1/, j=3/,1/) term P, dwa poziomy: P 3, P 1 1s s p 1 3p 1 (l 1 =1, l =1, s 1 =1/, s =1/) L=,1,0; S=1,0 Termy: 3 D, 1 D, 3 P, 1 P, 3 S, 1 S Poziomy: Dla 3 D J= 3,, 1, stad poziomy: 3 D 3, 3 D, 3 D 1 Dla 1 D J=, stad poziomy: 1 D Dla 3 P J=, 1, 0, stad poziomy: 3 P, 3 P 1, 3 P 0 Dla 1 P poziom: 1 P 1, dla 3 S poziom: 3 S 1, dla 1 S poziom: 1 S 0 Poziom energetyczny S+1 L J jest (J + 1)-krotnie zdegenerowany, ponieważ wartość energii nie zależy od liczby M J, określajacej wartość sk ladowej z ca lkowitego momentu pedu, tylko od liczby kwantowej J, określajacej wartość kwadratu ca lkowitego momentu pedu, a danej liczbie J odpowiada J + 1 możliwych wartości M J. Jest zatem J + 1 stanów o tej samej energii (stanom tym odpowiadaja różne wartości sk ladowej z ca lkowitego momentu pedu) Na przyk lad, poziomowi energetycznemu 3 P odpowiada 5 rożnych stanów (krotność degeneracji tego poziomu wynosi 5). 10

11 Dla elektronów równoważnych (z tej samej podpwo loki, np. p ) - nie wszystkie termy sa dozwolone ze wzgledu na zakaz Pauliego Termy dla konfiguracji np (np. p ). W tabeli wszystkie możliwe (zgodne z zakazem Pauliego) sposoby przyporzadkowania dwóch elektronów 6-ciu spinorbitalom (3 orbitale p i funkcje spinowe). ( ) 6 =15 sposobów. W nawiasach podano wartości magnetycznej liczby kwantowej i magnetycznej spinowej liczby kwantowej dla każdego elektronu (m 1, m s1 ; m, m s ). M S - wartość liczby kwantowej rzutu ca lkowitego spinu na wyróżniony kierunek w przestrzeni; M L - wartość liczby kwantowej rzutu ca lkowitego orbitalnego momentu pedu na wyróżniony kierunek w przestrzeni. M S ( ;+1-1 ) +1 (+1 + 1; 0 + 1) (+1 + 1; 0-1) (+1-1; 0 + 1) (+1-1;0-1) M L 0 ( ; ) ( ; -1-1 ) (+1-1 ; ) (+1-1 ; -1-1 ) (0 + 1 ;0-1 ) -1 - ( ; ) ( ; 0-1 ) (-1-1 ; ) (-1 + 1; -1-1) (-1-1 ;0-1 ) Identyfikujemy przyporzadkowania elektronów odpowiadajace L= (bo jest M L =), a wiec L = i M L =, 1, 0, -1, -; M S =0 (usuwamy 5 możliwości pasujacych do termu 1 D). M S M L ( ; ) ( ; ) (+1-1 ; ) ; ) (+1-1 ;0-1 ) ; -1-1 ) (0 + 1 ;0-1 ) -1 - ( ; ) (-1-1 ; ) (-1-1 ;0-1 ) Identyfikujemy i usuwamy 9 możliwych przyporzadkowań pasujacych do termu 3 P i pozostaje jedna możliwość odpowiadajaca termowi 1 S Regu ly Hunda Termem podstawowym jest term o najwi ekszej multipletowości Spośród termów o nawi ekszej multipletowości termem podstawowym jest term o najwi ekszej wartości liczby kwantowej ca lkowitego orbitalnego momentu p edu L Dla podpow loki zape lnionej mniej niż w po lowie - poziomem podstawowym jest poziom o najmniejszej wartości liczby kwantowej ca lkowitego momentu p edu J; dla podpow loki zape lnionej wi ecej niż w po lowie - poziomem podstawowym jest poziom o najwi ekszej wartości liczby kwantowej ca lkowitego momentu p edu J 11

12 Wyznaczenie tylko termu podstawowego dla elektronów równoważnych. Przyk lad: konfiguracja d 3 Rozmieszczenie elektronów tak, aby uzyskać najwieksz a możliwa wartość S i L (regu ly Hunda) L= +1+0 = 3, S= 3, S+1=4 term 4 F, możliwe wartości J: od 3-3 do 3 + 3, czyli 3, 5, 7, 9 Podpow loka zapelniona mniej niż w polowie podstawowy poziom energetyczny: 4 F 3 1

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

Metoda Hartree-Focka (Hartree ego-focka)

Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera,

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu. Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28 Chemia kwantowa makroczasteczek konspekt wyk ladu dla III roku biofizyki; kurs WBt-ZZ28 Mariusz Radoń (ostatnia aktualizacja: 5 czerwca 2017) Z uwagi na roboczy charakter niniejszych notatek moga sie w

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XII (z 1.01.015) Uwaga! Strony 1-14 sa w wiekszości powtórzeniem stron z Notatek do wyk ladu XI z 15.1.014 Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

Teoria funkcjona lu g Density Functional Theory (DFT)

Teoria funkcjona lu g Density Functional Theory (DFT) Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego

Bardziej szczegółowo

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y) Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia Monika Musia l Uk lad zamkniȩtopow lokowy: N elektronów; N 2 elektronowa: Ψ = 1 N! orbitali. Funkcja falowa N- φ 1 (1)α(1)

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

Teoria funkcjonału gęstości

Teoria funkcjonału gęstości Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Metoda oddzia lywania konfiguracji (CI)

Metoda oddzia lywania konfiguracji (CI) Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator

Bardziej szczegółowo

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia.   mm CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,

Bardziej szczegółowo

Korelacja elektronowa

Korelacja elektronowa Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 2015-12-25 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał. c.us.edu.pl/ mm

PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał.  c.us.edu.pl/ mm PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY http://zcht.mf c.us.edu.pl/ mm przybliżenie jednoelektronowe Układy wieloelektronowe- atomy i cz asteczki zawieraj ace dwa i wiȩcej elektronów; układy

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Rotacje i drgania czasteczek

Rotacje i drgania czasteczek Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l WYK LAD STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l http : //zcht.mf c.us.edu.pl/ mm WYK LAD - wyznaczanie orbitali atomowych i molekularnych Uk lad zamkniȩtopow

Bardziej szczegółowo

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI)

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) lub ĤΨ i = E i Ψ i Ψ i = K r=0 c riφ r ĤΨ = EΨ Ψ = c o Φ o + ia ca i Φ a i + ijab cab ij Φ ab ij + ijkabc cabc ijk Φ abc ijk + Funkcje Φ r (Φij..

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu

Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu Opis ten znajdziesz w sieci pod adresem: https://www.student.chemia.uj.edu.pl/~tborowsk Uwagi lub/i zapytania prosz e kierować na adres

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 16.12.2017 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

Wykład 3: Atomy wieloelektronowe

Wykład 3: Atomy wieloelektronowe Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu.

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Wizualizacja Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Graficzny obraz schematu DEA w obliczeniach energii

Bardziej szczegółowo

W lasności elektryczne moleku l

W lasności elektryczne moleku l W lasności elektryczne moleku l Hamiltonian dla czasteczki w jednorodnym polu elektrycznym E ma postać: Ĥ(E) = Ĥ + E ˆµ x gdzie zak ladamy, że pole jest zorientowane wzd luż osi x a ˆµ x jest operatorem

Bardziej szczegółowo

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie Notatki do wyk ladu X (z 08.12.2014) Metoda Hückla Uproszczona wersja metody orbitali molekularnych (MO) w przybliżeniu liniowej kombinacji orbitali atomowych (LCAO) stosowana do opisu struktury elektronowej

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach.

Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach. Modelowanie, wybór i budowa modelu procesu. Modelowanie służy do poznania danego procesu, po przez zastąpienie go uproszczonym układem, który odzwierciedla jedynie wybrane cechy procesu. Analizę informacji

Bardziej szczegółowo

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P 3.4 Liczby kwantowe Funkcja falowa jest wyrażeniem matematycznym, które opisuje elektron jako cząstkę o właściwościach falowych a to oznacza, że każdemu z elektronów w atomie możemy przyporządkować jedną

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Uwzględnienie energii korelacji w metodach ab initio - przykłady

Uwzględnienie energii korelacji w metodach ab initio - przykłady Uwzględnienie energii korelacji w metodach ab initio - przykłady Funkcje falowe (i funkcje bazy) jawnie skorelowane - zależa jawnie od odległości międzyelektronowych r ij = r i r j Funkcje falowe w postaci

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

ORBITALE ATOMOWE ATOM W POLU MAGNETYCZNYM SPIN. Monika Musiał. c.us.edu.pl/ mm

ORBITALE ATOMOWE ATOM W POLU MAGNETYCZNYM SPIN. Monika Musiał.   c.us.edu.pl/ mm ORBITALE ATOMOWE ATOM W POLU MAGNETYCZNYM SPIN http://zcht.mf c.us.edu.pl/ mm - orbitale atome Orbitale atomowe- część kątowa we wpółrzędnych sferycznych: 1.orbitales:ogólniens:1s,2s,3s,4setc. Ψ ns =N

Bardziej szczegółowo

w jednowymiarowym pudle potencja lu

w jednowymiarowym pudle potencja lu Do wyk ladu II czastka w pudle potencja lu oscylator harmoniczny rotator sztywny Ścis le rozwiazania równania Schrödingera: atom wodoru i jon wodoropodobny) Czastka w jednowymiarowym pudle potencja lu

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo