Metoda Hartree-Focka (Hartree ego-focka)
|
|
- Elżbieta Laskowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera, zbudowanego z n spinorbitali Do wyrażenia: ε = Φ ĤΦdτ Φ Φdτ E 0 (1) podstawiamy operator Ĥ dla danego uk ladu wieloelektronowego i funkcj e Φ w postaci wyznacznika Slatera Jak znaleźć najlepsze orbitale, z których skonstruowana jest funkcja Φ w postaci wyznacznika Slatera? (dla zainteresowanych wyprowadzenie: np. PWN 2007, Uz. 6.4, str ) W. Ko los, J.Sadlej, Atom i czasteczka, Dla atomu helu: φ 1 = ψ 1 α, φ 2 = ψ 1 β, gdzie ψ = ψ(x 1, y 1, z 1 )=ψ 1 (1) (orbital atomowy). Taki sam orbital może opisywać drugi elektron: ψ 1 (x 2, y 2, z 2 ) =ψ 1 (2) Równanie różniczkowo-ca lkowe określajace optymalne orbitale Równanie Focka: Dla helu: 1 orbital ˆF (1)ψ 1 (1) = ε 1 ψ 1 (1) (2) ˆF - operator Focka ˆF (1) = r 1 + V ee (1) (3) V ee (1) potencja l pochodzacy od oddzia lywania z drugim elektronem (opisywanym przez taki sam orbital ψ 1 ) V ee (1) = 2J 1 (1) K 1 (1) (4) Ogólna definicja operatorów Ĵq(1) i ˆKq (1): Ĵ q (1)ψ p (1) = [ ψq(2) 1 ψ q (2)dτ]ψ p (1) (5) r 12 operator kulombowski operator wymienny ˆK q (1)ψ p (1) = [ ψ q(2) 1 r 12 ψ p (2)dτ]ψ q (1) (6)
2 Ograniczona metoda Hartree-Focka - RHF (Restricted Hartree- Fock) Rozważamy uk lady z parzysta liczba elektronów (prostsze równania). Dla neonu n=10. Potrzeba 10 spinorbitali. Można je utworzyć z 5 orbitali: φ 1 = ψ 1 α, φ 2 = ψ 1 β, φ 3 = ψ 2 α, φ 4 = ψ 2 β, φ 5 = ψ 3 α, φ 6 = ψ 3 β, φ 7 = ψ 4 α, φ 8 = ψ 4 β, φ 9 = ψ 5 α, φ 10 = ψ 5 β, Dla uk ladu n-elektronowego - n/2 orbitali. (W równaniu Focka wystepuj a wspó lrzedne jednego elektronu, tu przyk ladowo 1) ˆF (1)ψ p (1) = ε p ψ p (1) p = 1, 2, 3, 4, 5 (7) ˆF (1) = r 1 + ˆV ee (1) (8) ˆV ee (1) operator odpowiadajacy energii potencjalnej elektronu w statycznym uśrednionym polu wytworzonym przez pozosta le elektrony (z których każdy opisywany jest przez orbital) ˆF (1)ψ p (1) = ε p ψ p (1) (9) ψp(1) ˆF (1)ψ p (1)dτ 1 = ε p ψp(1)ψ p (1)dτ 1 (10) ε p = ψp(1)( 1 2 1)ψ p (1)dτ 1 ψp(1) 2 ψ p (1)dτ 1 + r 1 ψ p(1) ˆV ee ψ p (1)dτ 1 (11) ε p - efektywna energia elektronu opisywanego orbitalem ψ p ˆV ee zawiera operatory: kulombowskie Ĵq i wymienne ˆK q Energia orbitalna ε p - interpretowana jako energia elektronu poruszajacego sie w polu adra i uśrednionym polu potencja lu pozosta lych elektronów j Można interpretować ε p jako energie elektronu w atomie, ale jest to pojecie wynikajace z przyjecia przybliżenia jednoelektronowego. Nie istnieje żadna metoda doświadczalna pozwalajaca na dok ladne wyznaczenie energii określonego elektronu w atomie (lub innym uk ladzie wieloelektronowym). Energia jonizacji: E jonizacji = E jonu E atomu E jonizacji,p - energia potrzebna do oderwania od atomu elektronu opisywanego przez orbital ψ p Twierdzenie Koopmansa E jonizacji,p ε p 2
3 Operator kulombowski wk lady postaci: ψ p(1)ψ p (1) 1 r 12 ψ q(2)ψ q (2)dτ 1 dτ 2 (12) odpychanie elektronów opisywanych przez orbitale ψ p i ψ q wk lady pochodzace od operatora ˆK q nie wystepuj a w oddzia lywaniu ladunków klasycznych Energia ca lkowita w metodzie Hartree-Focka E HF : E HF p 2ε p (13) Energia ca lkowita NIE JEST RÓWNA sumie energii orbitalnych odpowiadaj acych orbitalom obsadzonym przez elektrony Suma energii orbitalnych - podwójne liczenie oddzia lywania mi edzy elektronami E HF = p 2ε p E ee (14) gdzie E ee - wk lad do energii pochodzacy od oddzia lywania miedzy elektronami Jak rozwiazać: ˆF (1)ψ p (1) = ε p ψ p (1) równanie pseudow lasne Operator Focka ˆF zależy od orbitali ψ p, czyli od szukanych rozwiazań równania! Metoda iteracyjna rozwiazywania równania Focka START - przybliżone orbitale ( byle jakie ) 1. zbudowanie operatora Focka z orbitali obsadzonych 2. rozwiazanie równania Focka orbitale (lepsze) 3. wybranie orbitali obsadzonych (niskie energie orbitalne) 4. sprawdzenie, czy energia ca lkowita uleg la istotnemu obniżeniu: TAK - powrót do punktu 1 NIE - KONIEC Metoda pola samouzgodnionego SCF (Self Consistent Field) 3
4 Orbitale atomowe: ˆF (1)ψ p (1) = ε p ψ p (1) (15) - cześć katowa jak dla atomu wodoru (symetria sferyczna) - cz eść przestrzenna inna niż dla atomu wodoru ε p - energia orbitalna zależność od n i od l Metody: numeryczne rozwiazanie równania obliczanie analitycznych przybliżeń do orbitali ψ p = m c pi χ i, (16) i=1 gdzie χ i tzw. funkcje bazy, c pi -poszukiwane wspó lczynniki (metoda Hartree- Focka- Roothaana) Podpow loka elektronowa - zbiór spinorbitali o określonych wartościach liczb kwantowych n i l (takie same energie orbitalne). Liczba spinorbitali dla danej podpow loki wynosi 2(2l+1), bo spinorbitale różnia sie liczbami m s (2 wartości) i m l (2l+1 wartości). Jeśli każdemu spinorbitalowi z danej podpow loki elektronowej przyporzadkowany jest elektron (podpow loka jest w pe lni obsadzona elektronami), to nazywa sie ja zamkniet a. Jeśli żadnemu spinorbitalowi z danej podpow loki nie jest przyporzadkowany elektron, to nazywa sie ja pusta. Podpow loke elektronowa, która nie jest pusta, ale nie jest w pe lni obsadzona elektronami nazywa sie otwarta. Metoda RHF - uk lady zamkni etopow lokowe Uk lady otwartopow lokowe: Metoda ROHF (Restricted Open-Shell Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ 2 α, ψ 2 β, ψ 3 α, gdzie ψ i oznacza orbital 4
5 Metoda UHF (Unrestricted Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ 2 α, ψ 2 β, ψ 3 α, różne orbitale dla różnych spinów Sens fizyczny (interpretacja statystyczna) - tylko kwadrat modu lu funkcji falowej opisujacej wszystkie elektrony danego atomu. Opis stanu uk ladu wieloelektronowego za pomoca (nawet najlepszej) funkcji Hartree- Focka energia uk ladu obarczona b l edem wynikajacym z zastosowania przybliżenia jednoelektronowego E kor = E HF E dokladna Energia korelacji - b l ad pope lniany, gdy energia jest obliczana za pomoca najlepszej funkcji Hartree-Focka (E HF ) Przybliżenie jednoelektronowe pozwala wyrazić strukture elektronowa atomu za pomoca jego konfiguracji, czyli przyporzadkowania elektronów spinorbitalom (zgodnie z zakazem Pauliego). Konfiguracja elektronowa atomu - określona przez podanie liczb elektronów, przyporzadkowanych poszczególnym podpow lokom elektronowym. Maksymalna liczba elektronów dla podpow loki, która tworza spinorbitale o określonych wartościach liczb kwantowych n i l, wynosi 2(2l+1)). 5
6 Konfiguracja atomu w stanie podstawowym. Wzrost energii orbitalnych Konfiguracja elektronowa gazu szlachetnego 1s 2He: 1s 2 2s 2p 10Ne: [ 2 He]2s 2 2p 6 3s 3p 18Ar: [ 10 Ne]3s 2 3p 6 4s 3d 4p 36Kr: [ 18 Ar]3d 10 4s 2 4p 6 5s 4d 5p 54Xe: [ 36 Kr]4d 10 5s 2 5p 6 6s 4f 5d 6p 86Rn: [ 54 Xe]4f 14 5d 10 6s 2 6p 6 7s 5f 6d 7p 118 Uuo: [ 86 Rn]5f 14 6d 10 7s 2 7p 6 Regu la zabudowy pow lok elektronowych atomu (Aufbau Prinzip): podpow loki zape lniane sa elektronami w kolejności rosnacej energii (od lewej strony do prawej i od góry do do lu), aż do wyczerpania liczby elektronów dla danego atomu. (Pierwiastek o liczbie atomowej 118: od 1979 Uuo - ununoctium, od 2016 Og - oganesson) Konfiguracje standardowe: 23V: [ 18 Ar]3d 3 4s 2 26Fe: [ 18 Ar]3d 6 4s 2 Konfiguracje niestandardowe, gdy podpow loka (n-1)d jest bliska ca lkowitemu zape lnieniu albo zape lnieniu w po lowie. 24Cr: [ 18 Ar]3d 5 4s 1 29Cu: [ 18 Ar]3d 10 4s 1 46Pd: [ 36 Kr]4d 10 Konfiguracja atomu w stanie wzbudzonym Schemat pobudzeń elektronowych w modelu orbitalnym (W. Ko los, J.Sadlej, Atom i czasteczka, WNT 2007, s ) 6
7 Konfiguracja atomu w stanie wzbudzonym. Na przyk lad, dla atomu He w jednym ze stanów wzbudzonych: 1s 1 2s 1 7
8 Trzeba rozważać energi e (stan) atomu wieloelektronowego jako ca lości. Atom He w jednym ze stanów wzbudzonych: 1s 1 2s 1 Ca lkowita funkcje falowa można przedstawić jako iloczyn cześci przestrzennej i cześci spinowej. Cześć funkcji falowej zależna od wspó lrzednych przestrzennych: ψ 1s (1) ψ 2s (2), ψ 2s (1) ψ 1s (2) Cześć spinowa funkcji falowej: α(1) α(2), β(1) β(2), α(1) β(2), β(1) α(2) Ca lkowita funkcja falowa - antysymetryczna ze wzgledu na zamiane elektronów 1 i 2: cześć przestrzenna - symetryczna, to cześć spinowa - antysymetryczna cześć przestrzenna - antysymetryczna, to cześć spinowa - symetryczna 1 Ψ = 1 2 [ψ 1s(1) ψ 2s (2) + ψ 2s (1) ψ 1s (2)][α(1) β(2) β(1) α(2)] (17) singlet 1 2 [ψ 1s(1) ψ 2s (2) ψ 2s (1) ψ 1s (2)]α(1) α(2) (18) 1 2 [ψ 1s(1) ψ 2s (2) ψ 2s (1) ψ 1s (2)][α(1) β(2) + β(1) α(2)] (19) 1 2 [ψ 1s(1) ψ 2s (2) ψ 2s (1) ψ 1s (2)]β(1) β(2) (20) 3 Ψ tryplet (3 funkcje falowe) 8
9 Oznaczenia: ψ 1s jako 1s, ψ 2s jako 2s Funkcja falowa dla singletu 1 Ψ = 1 [1s(1) 2s(2) + 2s(1) 1s(2)][α(1) β(2) β(1) α(2)] (21) 2 1 Ψ = 1 [1s(1)α(1)2s(2)β(2) + 2s(1)α(1)1s(2)β(2) 2 (22) 1s(1)β(1)2s(2)α(2) 2s(1)β(1)1s(2)α(2)] (23) = 1 2 ( 1s(1)α(1) 1s(2)α(2) 2s(1)β(1) 2s(2)β(2) (24) 1s(1)β(1) 1s(2)β(2) 2s(1)α(1) 2s(2)α(2) ) == 1 2 (W 1 W 2 ) (25) Jedna z funkcji falowych dla trypletu (M S =0, wartość rzutu wypadkowego spinu na wyróżniony kierunek wynosi 0) 3 Ψ = 1 [1s(1) 2s(2) 2s(1) 1s(2)][α(1) β(2) + β(1) α(2)] (26) 2 1 Ψ = 1 [1s(1)α(1)2s(2)β(2) 2s(1)α(1)1s(2)β(2) 2 (27) +1s(1)β(1)2s(2)α(2) 2s(1)β(1)1s(2)α(2)] (28) = 1 2 ( 1s(1)α(1) 1s(2)α(2) 2s(1)β(1) 2s(2)β(2) + (29) 1s(1)β(1) 1s(2)β(2) 2s(1)α(1) 2s(2)α(2) ) == 1 2 (W 1 + W 2 ) (30) Zatem, te same konfiguracje (wyznaczniki) pojawiaja sia dla różnych stanów wzbudzonych (tu zarówno dla stanu singletowego jak dla trypletowego atomu helu). Funkcja falowa w postaci jednego wyznacznika nie nadaje si e do opisu stanu uk ladu otwartopow lokowego, dla którego wyst epuje pojedyncze obsadzenie wi ecej niż jednego orbitalu, a spin ca lkowity jest niższy niż najwyższy możliwy dla danej konfiguracji. Metoda UHF (Unrestricted Hartree-Fock; jeden wyznacznik - różne orbitale dla różnych spinów) może prowadzić do niefizycznych stanów, które nie maja określonej wartości ca lkowitego spinu. 9
10 Cześci przestrzenne funkcji falowej dla stanów wzbudzonych 1 S (singlet) i 3 S (tryplet) Ψ sing = ( =N s e ( 2α sr 1 ) [1 r 2 ]e ( αsr2) + e ( 2αsr 2) [1 r 1 ]e ) ( αsr 1) Ψ trip = ( =N t e ( 2α t r 1 ) [1 r 2 ]e ( α tr 2 ) e ( 2α tr 2 ) [1 r 1 ]e ) ( α tr 1 ) Prawdopodobieństwo znalezienia elektronu w określonej odleg lości r od jadra Na rysunkach: (r 1 r 2 Ψ sing ) 2 (r 1 r 2 Ψ trip ) 2 Rozk lad g estości elektronowej (a zatem także wartość energii) zależy od wypadkowego spinu elektronów. 10
Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)
Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika
Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)
Notatki do wyk ladu IV (z 1.11.01) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika
Notatki do wyk ladu IV (z 27.10.2014)
Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba
JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.
Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;
Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader
Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m
Teoria funkcjona lu g
Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla
Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa
Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba
Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Metody obliczeniowe chemii teoretycznej
Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave
Wykład 16: Atomy wieloelektronowe
Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Układy wieloelektronowe
Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28
Chemia kwantowa makroczasteczek konspekt wyk ladu dla III roku biofizyki; kurs WBt-ZZ28 Mariusz Radoń (ostatnia aktualizacja: 5 czerwca 2017) Z uwagi na roboczy charakter niniejszych notatek moga sie w
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Teoria funkcjona lu g
Notatki do wyk ladu XII (z 1.01.015) Uwaga! Strony 1-14 sa w wiekszości powtórzeniem stron z Notatek do wyk ladu XI z 15.1.014 Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość
TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l
TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
Hierarchia baz gaussowskich (5)
Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)
Teoria funkcjonału gęstości
Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/
Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)
Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a
Teoria funkcjona lu g Density Functional Theory (DFT)
Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego
Uklady modelowe III - rotator, atom wodoru
Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R
Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)
Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza
c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe
TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
Wykład 3: Atomy wieloelektronowe
Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń
Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse
STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l
STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia Monika Musia l Uk lad zamkniȩtopow lokowy: N elektronów; N 2 elektronowa: Ψ = 1 N! orbitali. Funkcja falowa N- φ 1 (1)α(1)
INŻYNIERIA BIOMEDYCZNA. Wykład X
INŻYNIERIA BIOMEDYCZNA Wykład X 2015-12-25 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa
Struktura elektronowa
Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Postulaty mechaniki kwantowej
Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu
CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Metoda oddzia lywania konfiguracji (CI)
Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator
INŻYNIERIA BIOMEDYCZNA. Wykład X
INŻYNIERIA BIOMEDYCZNA Wykład X 16.12.2017 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa
i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij
Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ
1. Przesłanki doświadczalne mechaniki kwantowej.
1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Podstawy chemii obliczeniowej
Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I
Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu
Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu Opis ten znajdziesz w sieci pod adresem: https://www.student.chemia.uj.edu.pl/~tborowsk Uwagi lub/i zapytania prosz e kierować na adres
I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony
Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l
WYK LAD STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l http : //zcht.mf c.us.edu.pl/ mm WYK LAD - wyznaczanie orbitali atomowych i molekularnych Uk lad zamkniȩtopow
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje
CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm
CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,
Uk lady modelowe II - oscylator
Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin
METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI)
METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) lub ĤΨ i = E i Ψ i Ψ i = K r=0 c riφ r ĤΨ = EΨ Ψ = c o Φ o + ia ca i Φ a i + ijab cab ij Φ ab ij + ijkabc cabc ijk Φ abc ijk + Funkcje Φ r (Φij..
b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych
1. Ustal jakich trzech różnych pierwiastków dotyczą podane informacje. Zapisz ich symbole a) W przestrzeni wokółjądrowej dwuujemnego jonu tego pierwiastka znajduje się 18 e. b) Pierwiastek E tworzy tlenek
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia
Chemia Ogólna wykład 1
Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami
PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał. c.us.edu.pl/ mm
PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY http://zcht.mf c.us.edu.pl/ mm przybliżenie jednoelektronowe Układy wieloelektronowe- atomy i cz asteczki zawieraj ace dwa i wiȩcej elektronów; układy
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Korelacja elektronowa
Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga
Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3
Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą
CHEMIA WARTA POZNANIA
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Uwzględnienie energii korelacji w metodach ab initio - przykłady
Uwzględnienie energii korelacji w metodach ab initio - przykłady Funkcje falowe (i funkcje bazy) jawnie skorelowane - zależa jawnie od odległości międzyelektronowych r ij = r i r j Funkcje falowe w postaci
Inżynieria Biomedyczna. Wykład XII
Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Podstawy chemii obliczeniowej
Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Fizyka atomowa r. akad. 2012/2013
r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu
Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach.
Modelowanie, wybór i budowa modelu procesu. Modelowanie służy do poznania danego procesu, po przez zastąpienie go uproszczonym układem, który odzwierciedla jedynie wybrane cechy procesu. Analizę informacji
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a
Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie
Notatki do wyk ladu X (z 08.12.2014) Metoda Hückla Uproszczona wersja metody orbitali molekularnych (MO) w przybliżeniu liniowej kombinacji orbitali atomowych (LCAO) stosowana do opisu struktury elektronowej
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
Wykład V Wiązanie kowalencyjne. Półprzewodniki
Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie
W lasności elektryczne moleku l
W lasności elektryczne moleku l Hamiltonian dla czasteczki w jednorodnym polu elektrycznym E ma postać: Ĥ(E) = Ĥ + E ˆµ x gdzie zak ladamy, że pole jest zorientowane wzd luż osi x a ˆµ x jest operatorem
Diagonalizacja, problem w lasny, równanie wiekowe
Diagonalizacja, problem w lasny, równanie wiekowe Procedura diagonalizacji macierzy A o wymiarze n n (np. macierzy Hessianu) a 11 a 12... a 1n a 21 a 22... a 2n A =.... a n1 a n2... a nn polega na znalezieniu
Oddziaływania w magnetykach
9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu.
Wizualizacja Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Graficzny obraz schematu DEA w obliczeniach energii
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Budowa atomu. Izotopy
Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie
Wykład 5: Cząsteczki dwuatomowe
Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy
Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Chemia teoretyczna I Semestr V (1 )
1/ 6 Chemia Chemia teoretyczna I Semestr V (1 ) Osoba odpowiedzialna za przedmiot: dr hab. inż. Aleksander Herman. 2/ 6 Wykład Program Podstawy mechaniki kwantowej Ważne problemy modelowe Charakterystyka
Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej